Abstract:Population growth and increasing droughts are creating unprecedented strain on the continued availability of water resources. Since irrigation is a major consumer of fresh water, wastage of resources in this sector could have strong consequences. To address this issue, irrigation water management and prediction techniques need to be employed effectively and should be able to account for the variabilities present in the environment. The different techniques surveyed in this paper can be classified into two categories: computational and statistical. Computational methods deal with scientific correlations between physical parameters whereas statistical methods involve specific prediction algorithms that can be used to automate the process of irrigation water prediction. These algorithms interpret semantic relationships between the various parameters of temperature, pressure, evapotranspiration etc. and store them as numerical precomputed entities specific to the conditions and the area used as the data for the training corpus used to train it. We focus on reviewing the computational methods used to determine Evapotranspiration and its implications. We compare the efficiencies of different data mining and machine learning methods implemented in this area, such as Logistic Regression, Decision Tress Classifier, SysFor, Support Vector Machine(SVM), Fuzzy Logic techniques, Artifical Neural Networks(ANNs) and various hybrids of Genetic Algorithms (GA) applied to irrigation prediction. We also recommend a possible technique for the same based on its superior results in other such time series analysis tasks.
Abstract:Speech Translation has always been about giving source text or audio input and waiting for system to give translated output in desired form. In this paper, we present the Acoustic Dialect Decoder (ADD) - a voice to voice ear-piece translation device. We introduce and survey the recent advances made in the field of Speech Engineering, to employ in the ADD, particularly focusing on the three major processing steps of Recognition, Translation and Synthesis. We tackle the problem of machine understanding of natural language by designing a recognition unit for source audio to text, a translation unit for source language text to target language text, and a synthesis unit for target language text to target language speech. Speech from the surroundings will be recorded by the recognition unit present on the ear-piece and translation will start as soon as one sentence is successfully read. This way, we hope to give translated output as and when input is being read. The recognition unit will use Hidden Markov Models (HMMs) Based Tool-Kit (HTK), hybrid RNN systems with gated memory cells, and the synthesis unit, HMM based speech synthesis system HTS. This system will initially be built as an English to Tamil translation device.