Dense object detection is the process of detecting and localizing objects in images with dense annotations.
A consistent trend throughout the research of oriented object detection has been the pursuit of maintaining comparable performance with fewer and weaker annotations. This is particularly crucial in the remote sensing domain, where the dense object distribution and a wide variety of categories contribute to prohibitively high costs. Based on the supervision level, existing oriented object detection algorithms can be broadly grouped into fully supervised, semi-supervised, and weakly supervised methods. Within the scope of this work, we further categorize them to include sparsely supervised and partially weakly-supervised methods. To address the challenges of large-scale labeling, we introduce the first Sparse Partial Weakly-Supervised Oriented Object Detection framework, designed to efficiently leverage only a few sparse weakly-labeled data and plenty of unlabeled data. Our framework incorporates three key innovations: (1) We design a Sparse-annotation-Orientation-and-Scale-aware Student (SOS-Student) model to separate unlabeled objects from the background in a sparsely-labeled setting, and learn orientation and scale information from orientation-agnostic or scale-agnostic weak annotations. (2) We construct a novel Multi-level Pseudo-label Filtering strategy that leverages the distribution of model predictions, which is informed by the model's multi-layer predictions. (3) We propose a unique sparse partitioning approach, ensuring equal treatment for each category. Extensive experiments on the DOTA and DIOR datasets show that our framework achieves a significant performance gain over traditional oriented object detection methods mentioned above, offering a highly cost-effective solution. Our code is publicly available at https://github.com/VisionXLab/SPWOOD.
Most vision models are trained on RGB images processed through ISP pipelines optimized for human perception, which can discard sensor-level information useful for machine reasoning. RAW images preserve unprocessed scene data, enabling models to leverage richer cues for both object detection and object description, capturing fine-grained details, spatial relationships, and contextual information often lost in processed images. To support research in this domain, we introduce RAWDet-7, a large-scale dataset of ~25k training and 7.6k test RAW images collected across diverse cameras, lighting conditions, and environments, densely annotated for seven object categories following MS-COCO and LVIS conventions. In addition, we provide object-level descriptions derived from the corresponding high-resolution sRGB images, facilitating the study of object-level information preservation under RAW image processing and low-bit quantization. The dataset allows evaluation under simulated 4-bit, 6-bit, and 8-bit quantization, reflecting realistic sensor constraints, and provides a benchmark for studying detection performance, description quality & detail, and generalization in low-bit RAW image processing. Dataset & code upon acceptance.
Prior to modern Earth observation technologies, historical maps provide a unique record of long-term urban transformation and offer a lens on the evolving identity of cities. However, extracting consistent and fine-grained change information from historical map series remains challenging due to spatial misalignment, cartographic variation, and degrading document quality, limiting most analyses to small-scale or qualitative approaches. We propose a fully automated, deep learning-based framework for fine-grained urban change analysis from large collections of historical maps, built on a modular design that integrates dense map alignment, multi-temporal object detection, and change profiling. This framework shifts the analysis of historical maps from ad hoc visual comparison toward systematic, quantitative characterization of urban change. Experiments demonstrate the robust performance of the proposed alignment and object detection methods. Applied to Paris between 1868 and 1937, the framework reveals the spatial and temporal heterogeneity in urban transformation, highlighting its relevance for research in the social sciences and humanities. The modular design of our framework further supports adaptation to diverse cartographic contexts and downstream applications.
3-D object detection based on 4-D radar-vision is an important part in Internet of Vehicles (IoV). However, there are two challenges which need to be faced. First, the 4-D radar point clouds are sparse, leading to poor 3-D representation. Second, vision datas exhibit representation degradation under low-light, long distance detection and dense occlusion scenes, which provides unreliable texture information during fusion stage. To address these issues, a framework named SDCM is proposed, which contains Simulated Densifying and Compensatory Modeling Fusion for radar-vision 3-D object detection in IoV. Firstly, considering point generation based on Gaussian simulation of key points obtained from 3-D Kernel Density Estimation (3-D KDE), and outline generation based on curvature simulation, Simulated Densifying (SimDen) module is designed to generate dense radar point clouds. Secondly, considering that radar data could provide more real time information than vision data, due to the all-weather property of 4-D radar. Radar Compensatory Mapping (RCM) module is designed to reduce the affects of vision datas' representation degradation. Thirdly, considering that feature tensor difference values contain the effective information of every modality, which could be extracted and modeled for heterogeneity reduction and modalities interaction, Mamba Modeling Interactive Fusion (MMIF) module is designed for reducing heterogeneous and achieving interactive Fusion. Experiment results on the VoD, TJ4DRadSet and Astyx HiRes 2019 dataset show that SDCM achieves best performance with lower parameter quantity and faster inference speed. Our code will be available.
We present VGGT-SLAM 2.0, a real time RGB feed-forward SLAM system which substantially improves upon VGGT-SLAM for incrementally aligning submaps created from VGGT. Firstly, we remove high-dimensional 15-degree-of-freedom drift and planar degeneracy from VGGT-SLAM by creating a new factor graph design while still addressing the reconstruction ambiguity of VGGT given unknown camera intrinsics. Secondly, by studying the attention layers of VGGT, we show that one of the layers is well suited to assist in image retrieval verification for free without additional training, which enables both rejecting false positive matches and allows for completing more loop closures. Finally, we conduct a suite of experiments which includes showing VGGT-SLAM 2.0 can easily be adapted for open-set object detection and demonstrating real time performance while running online onboard a ground robot using a Jetson Thor. We also test in environments ranging from cluttered indoor apartments and office scenes to a 4,200 square foot barn, and we also demonstrate VGGT-SLAM 2.0 achieves the highest accuracy on the TUM dataset with about 23 percent less pose error than VGGT-SLAM. Code will be released upon publication.
Open world object detection faces a significant challenge in domain-invariant representation, i.e., implicit non-causal factors. Most domain generalization (DG) methods based on domain adversarial learning (DAL) pay much attention to learn domain-invariant information, but often overlook the potential non-causal factors. We unveil two critical causes: 1) The domain discriminator-based DAL method is subject to the extremely sparse domain label, i.e., assigning only one domain label to each dataset, thus can only associate explicit non-causal factor, which is incredibly limited. 2) The non-causal factors, induced by unidentified data bias, are excessively implicit and cannot be solely discerned by conventional DAL paradigm. Based on these key findings, inspired by the Granular-Ball perspective, we propose an improved DAL method, i.e., GB-DAL. The proposed GB-DAL utilizes Prototype-based Granular Ball Splitting (PGBS) module to generate more dense domains from limited datasets, akin to more fine-grained granular balls, indicating more potential non-causal factors. Inspired by adversarial perturbations akin to non-causal factors, we propose a Simulated Non-causal Factors (SNF) module as a means of data augmentation to reduce the implicitness of non-causal factors, and facilitate the training of GB-DAL. Comparative experiments on numerous benchmarks demonstrate that our method achieves better generalization performance in novel circumstances.
The sparse object detection paradigm shift towards dense 3D semantic occupancy prediction is necessary for dealing with long-tail safety challenges for autonomous vehicles. Nonetheless, the current voxelization methods commonly suffer from excessive computation complexity demands, where the fusion process is brittle, static, and breaks down under dynamic environmental settings. To this end, this research work enhances a novel Gaussian-based adaptive camera-LiDAR multimodal 3D occupancy prediction model that seamlessly bridges the semantic strengths of camera modality with the geometric strengths of LiDAR modality through a memory-efficient 3D Gaussian model. The proposed solution has four key components: (1) LiDAR Depth Feature Aggregation (LDFA), where depth-wise deformable sampling is employed for dealing with geometric sparsity, (2) Entropy-Based Feature Smoothing, where cross-entropy is employed for handling domain-specific noise, (3) Adaptive Camera-LiDAR Fusion, where dynamic recalibration of sensor outputs is performed based on model outputs, and (4) Gauss-Mamba Head that uses Selective State Space Models for global context decoding that enjoys linear computation complexity.
This work focuses on national-scale land-use/land-cover (LULC) semantic segmentation using ALOS-2 single-polarization (HH) SAR data over Japan, together with a companion binary water detection task. Building on SAR-W-MixMAE self-supervised pretraining [1], we address common SAR dense-prediction failure modes, boundary over-smoothing, missed thin/slender structures, and rare-class degradation under long-tailed labels, without increasing pipeline complexity. We introduce three lightweight refinements: (i) injecting high-resolution features into multi-scale decoding, (ii) a progressive refine-up head that alternates convolutional refinement and stepwise upsampling, and (iii) an $α$-scale factor that tempers class reweighting within a focal+dice objective. The resulting model yields consistent improvements on the Japan-wide ALOS-2 LULC benchmark, particularly for under-represented classes, and improves water detection across standard evaluation metrics.
Nuclei panoptic segmentation supports cancer diagnostics by integrating both semantic and instance segmentation of different cell types to analyze overall tissue structure and individual nuclei in histopathology images. Major challenges include detecting small objects, handling ambiguous boundaries, and addressing class imbalance. To address these issues, we propose PanopMamba, a novel hybrid encoder-decoder architecture that integrates Mamba and Transformer with additional feature-enhanced fusion via state space modeling. We design a multiscale Mamba backbone and a State Space Model (SSM)-based fusion network to enable efficient long-range perception in pyramid features, thereby extending the pure encoder-decoder framework while facilitating information sharing across multiscale features of nuclei. The proposed SSM-based feature-enhanced fusion integrates pyramid feature networks and dynamic feature enhancement across different spatial scales, enhancing the feature representation of densely overlapping nuclei in both semantic and spatial dimensions. To the best of our knowledge, this is the first Mamba-based approach for panoptic segmentation. Additionally, we introduce alternative evaluation metrics, including image-level Panoptic Quality ($i$PQ), boundary-weighted PQ ($w$PQ), and frequency-weighted PQ ($fw$PQ), which are specifically designed to address the unique challenges of nuclei segmentation and thereby mitigate the potential bias inherent in vanilla PQ. Experimental evaluations on two multiclass nuclei segmentation benchmark datasets, MoNuSAC2020 and NuInsSeg, demonstrate the superiority of PanopMamba for nuclei panoptic segmentation over state-of-the-art methods. Consequently, the robustness of PanopMamba is validated across various metrics, while the distinctiveness of PQ variants is also demonstrated. Code is available at https://github.com/mkang315/PanopMamba.
One of the key features of sixth generation (6G) mobile communications will be integrated sensing and communication (ISAC). While the main goal of ISAC in standardization efforts is to detect objects, the byproducts of radar operations can be used to enable new services in 6G, such as weather sensing. Even though weather radars are the most prominent technology for weather detection and monitoring, they are expensive and usually neglect areas in close vicinity. To this end, we propose reusing the dense deployment of 6G base stations for weather sensing purposes by detecting and estimating weather conditions. We implement both a classifier and a regressor as a convolutional neural network trained across measurements with varying precipitation rates and wind speeds. We implement our approach in an ISAC proof-of-concept, and conduct a multi-week experiment campaign. Experimental results show that we are able to jointly and accurately classify weather conditions with accuracies of 99.38% and 98.99% for precipitation rate and wind speed, respectively. For estimation, we obtain errors of 1.2 mm/h and 1.5 km/h, for precipitation rate and wind speed, respectively. These findings indicate that weather sensing services can be reliably deployed in 6G ISAC networks, broadening their service portfolio and boosting their market value.