Abstract:With the rapid development of large vision language models (LVLMs), these models have shown excellent results in various multimodal tasks. Since LVLMs are prone to hallucinations and there are currently few datasets and evaluation methods specifically designed for remote sensing, their performance is typically poor when applied to remote sensing tasks. To address these issues, this paper introduces a high quality remote sensing LVLMs dataset, DDFAV, created using data augmentation and data mixing strategies. Next, a training instruction set is produced based on some high-quality remote sensing images selected from the proposed dataset. Finally, we develop a remote sensing LVLMs hallucination evaluation method RSPOPE based on the proposed dataset and evaluate the zero-shot capabilities of different LVLMs. Our proposed dataset, instruction set, and evaluation method files are available at https://github.com/HaodongLi2024/rspope.
Abstract:Document images are often degraded by various stains, significantly impacting their readability and hindering downstream applications such as document digitization and analysis. The absence of a comprehensive stained document dataset has limited the effectiveness of existing document enhancement methods in removing stains while preserving fine-grained details. To address this challenge, we construct StainDoc, the first large-scale, high-resolution ($2145\times2245$) dataset specifically designed for document stain removal. StainDoc comprises over 5,000 pairs of stained and clean document images across multiple scenes. This dataset encompasses a diverse range of stain types, severities, and document backgrounds, facilitating robust training and evaluation of document stain removal algorithms. Furthermore, we propose StainRestorer, a Transformer-based document stain removal approach. StainRestorer employs a memory-augmented Transformer architecture that captures hierarchical stain representations at part, instance, and semantic levels via the DocMemory module. The Stain Removal Transformer (SRTransformer) leverages these feature representations through a dual attention mechanism: an enhanced spatial attention with an expanded receptive field, and a channel attention captures channel-wise feature importance. This combination enables precise stain removal while preserving document content integrity. Extensive experiments demonstrate StainRestorer's superior performance over state-of-the-art methods on the StainDoc dataset and its variants StainDoc\_Mark and StainDoc\_Seal, establishing a new benchmark for document stain removal. Our work highlights the potential of memory-augmented Transformers for this task and contributes a valuable dataset to advance future research.
Abstract:Multimodal Large Language Models have advanced AI in applications like text-to-video generation and visual question answering. These models rely on visual encoders to convert non-text data into vectors, but current encoders either lack semantic alignment or overlook non-salient objects. We propose the Guiding Visual Encoder to Perceive Overlooked Information (GiVE) approach. GiVE enhances visual representation with an Attention-Guided Adapter (AG-Adapter) module and an Object-focused Visual Semantic Learning module. These incorporate three novel loss terms: Object-focused Image-Text Contrast (OITC) loss, Object-focused Image-Image Contrast (OIIC) loss, and Object-focused Image Discrimination (OID) loss, improving object consideration, retrieval accuracy, and comprehensiveness. Our contributions include dynamic visual focus adjustment, novel loss functions to enhance object retrieval, and the Multi-Object Instruction (MOInst) dataset. Experiments show our approach achieves state-of-the-art performance.
Abstract:This paper presents an innovative approach called BGTAI to simplify multimodal understanding by utilizing gloss-based annotation as an intermediate step in aligning Text and Audio with Images. While the dynamic temporal factors in textual and audio inputs contain various predicate adjectives that influence the meaning of the entire sentence, images, on the other hand, present static scenes. By representing text and audio as gloss notations that omit complex semantic nuances, a better alignment with images can potentially be achieved. This study explores the feasibility of this idea, specifically, we first propose the first Langue2Gloss model and then integrate it into the multimodal model UniBriVL for joint training. To strengthen the adaptability of gloss with text/audio and overcome the efficiency and instability issues in multimodal training, we propose a DS-Net (Data-Pair Selection Network), an Result Filter module, and a novel SP-Loss function. Our approach outperforms previous multimodal models in the main experiments, demonstrating its efficacy in enhancing multimodal representations and improving compatibility among text, audio, visual, and any sequence modalities.
Abstract:Zero-shot Chain-of-Thought (CoT) prompting emerges as a simple and effective strategy for enhancing the performance of large language models (LLMs) in real-world reasoning tasks. Nonetheless, the efficacy of a singular, task-level prompt uniformly applied across the whole of instances is inherently limited since one prompt cannot be a good partner for all, a more appropriate approach should consider the interaction between the prompt and each instance meticulously. This work introduces an instance-adaptive prompting algorithm as an alternative zero-shot CoT reasoning scheme by adaptively differentiating good and bad prompts. Concretely, we first employ analysis on LLMs through the lens of information flow to detect the mechanism under zero-shot CoT reasoning, in which we discover that information flows from question to prompt and question to rationale jointly influence the reasoning results most. We notice that a better zero-shot CoT reasoning needs the prompt to obtain semantic information from the question then the rationale aggregates sufficient information from the question directly and via the prompt indirectly. On the contrary, lacking any of those would probably lead to a bad one. Stem from that, we further propose an instance-adaptive prompting strategy (IAP) for zero-shot CoT reasoning. Experiments conducted with LLaMA-2, LLaMA-3, and Qwen on math, logic, and commonsense reasoning tasks (e.g., GSM8K, MMLU, Causal Judgement) obtain consistent improvement, demonstrating that the instance-adaptive zero-shot CoT prompting performs better than other task-level methods with some curated prompts or sophisticated procedures, showing the significance of our findings in the zero-shot CoT reasoning mechanism.
Abstract:In this work, we introduce DOPRA, a novel approach designed to mitigate hallucinations in multi-modal large language models (MLLMs). Unlike existing solutions that typically involve costly supplementary training data or the integration of external knowledge sources, DOPRA innovatively addresses hallucinations by decoding specific weighted layer penalties and redistribution, offering an economical and effective solution without additional resources. DOPRA is grounded in unique insights into the intrinsic mechanisms controlling hallucinations within MLLMs, especially the models' tendency to over-rely on a subset of summary tokens in the self-attention matrix, neglecting critical image-related information. This phenomenon is particularly pronounced in certain strata. To counteract this over-reliance, DOPRA employs a strategy of weighted overlay penalties and redistribution in specific layers, such as the 12th layer, during the decoding process. Furthermore, DOPRA includes a retrospective allocation process that re-examines the sequence of generated tokens, allowing the algorithm to reallocate token selection to better align with the actual image content, thereby reducing the incidence of hallucinatory descriptions in auto-generated captions. Overall, DOPRA represents a significant step forward in improving the output quality of MLLMs by systematically reducing hallucinations through targeted adjustments during the decoding process.
Abstract:Recently, multimodal large language models have exploded with an endless variety, most of the popular Large Vision Language Models (LVLMs) depend on sequential visual representation, where images are converted into hundreds or thousands of tokens before being input into the Large Language Model (LLM) along with language prompts. The black-box design hinders the interpretability of visual-language models, especially regarding more complex reasoning tasks. To explore the interaction process between image and text in complex reasoning tasks, we introduce the information flow method to visualize the interaction mechanism. By analyzing the dynamic flow of the information flow, we find that the information flow appears to converge in the shallow layer. Further investigation revealed a redundancy of the image token in the shallow layer. Consequently, a truncation strategy was introduced to aggregate image tokens within these shallow layers. This approach has been validated through experiments across multiple models, yielding consistent improvements.
Abstract:Skeleton-based action recognition has attracted much attention, benefiting from its succinctness and robustness. However, the minimal inter-class variation in similar action sequences often leads to confusion. The inherent spatiotemporal coupling characteristics make it challenging to mine the subtle differences in joint motion trajectories, which is critical for distinguishing confusing fine-grained actions. To alleviate this problem, we propose a Wavelet-Attention Decoupling (WAD) module that utilizes discrete wavelet transform to effectively disentangle salient and subtle motion features in the time-frequency domain. Then, the decoupling attention adaptively recalibrates their temporal responses. To further amplify the discrepancies in these subtle motion features, we propose a Fine-grained Contrastive Enhancement (FCE) module to enhance attention towards trajectory features by contrastive learning. Extensive experiments are conducted on the coarse-grained dataset NTU RGB+D and the fine-grained dataset FineGYM. Our methods perform competitively compared to state-of-the-art methods and can discriminate confusing fine-grained actions well.
Abstract:Detecting lane lines from sensors is becoming an increasingly significant part of autonomous driving systems. However, less development has been made on high-definition lane-level mapping based on aerial images, which could automatically build and update offline maps for auto-driving systems. To this end, our work focuses on extracting fine-level detailed lane lines together with their topological structures. This task is challenging since it requires large amounts of data covering different lane types, terrain and regions. In this paper, we introduce for the first time a large-scale aerial image dataset built for lane detection, with high-quality polyline lane annotations on high-resolution images of around 80 kilometers of road. Moreover, we developed a baseline deep learning lane detection method from aerial images, called AerialLaneNet, consisting of two stages. The first stage is to produce coarse-grained results at point level, and the second stage exploits the coarse-grained results and feature to perform the vertex-matching task, producing fine-grained lanes with topology. The experiments show our approach achieves significant improvement compared with the state-of-the-art methods on our new dataset. Our code and new dataset are available at https://github.com/Jiawei-Yao0812/AerialLaneNet.
Abstract:Low-light image enhancement is a crucial visual task, and many unsupervised methods tend to overlook the degradation of visible information in low-light scenes, which adversely affects the fusion of complementary information and hinders the generation of satisfactory results. To address this, our study introduces ``Enlighten-Your-Voice'', a multimodal enhancement framework that innovatively enriches user interaction through voice and textual commands. This approach does not merely signify a technical leap but also represents a paradigm shift in user engagement. Our model is equipped with a Dual Collaborative Attention Module (DCAM) that meticulously caters to distinct content and color discrepancies, thereby facilitating nuanced enhancements. Complementarily, we introduce a Semantic Feature Fusion (SFM) plug-and-play module that synergizes semantic context with low-light enhancement operations, sharpening the algorithm's efficacy. Crucially, ``Enlighten-Your-Voice'' showcases remarkable generalization in unsupervised zero-shot scenarios. The source code can be accessed from https://github.com/zhangbaijin/Enlighten-Your-Voice