Abstract:While recent advancements in animatable human rendering have achieved remarkable results, they require test-time optimization for each subject which can be a significant limitation for real-world applications. To address this, we tackle the challenging task of learning a Generalizable Neural Human Renderer (GNH), a novel method for rendering animatable humans from monocular video without any test-time optimization. Our core method focuses on transferring appearance information from the input video to the output image plane by utilizing explicit body priors and multi-view geometry. To render the subject in the intended pose, we utilize a straightforward CNN-based image renderer, foregoing the more common ray-sampling or rasterizing-based rendering modules. Our GNH achieves remarkable generalizable, photorealistic rendering with unseen subjects with a three-stage process. We quantitatively and qualitatively demonstrate that GNH significantly surpasses current state-of-the-art methods, notably achieving a 31.3% improvement in LPIPS.
Abstract:We present a 3D shape completion method that recovers the complete geometry of multiple objects in complex scenes from a single RGB-D image. Despite notable advancements in single object 3D shape completion, high-quality reconstructions in highly cluttered real-world multi-object scenes remains a challenge. To address this issue, we propose OctMAE, an architecture that leverages an Octree U-Net and a latent 3D MAE to achieve high-quality and near real-time multi-object shape completion through both local and global geometric reasoning. Because a na\"ive 3D MAE can be computationally intractable and memory intensive even in the latent space, we introduce a novel occlusion masking strategy and adopt 3D rotary embeddings, which significantly improves the runtime and shape completion quality. To generalize to a wide range of objects in diverse scenes, we create a large-scale photorealistic dataset, featuring a diverse set of 12K 3D object models from the Objaverse dataset which are rendered in multi-object scenes with physics-based positioning. Our method outperforms the current state-of-the-art on both synthetic and real-world datasets and demonstrates a strong zero-shot capability.
Abstract:We present the first neural relighting approach for rendering high-fidelity personalized hands that can be animated in real-time under novel illumination. Our approach adopts a teacher-student framework, where the teacher learns appearance under a single point light from images captured in a light-stage, allowing us to synthesize hands in arbitrary illuminations but with heavy compute. Using images rendered by the teacher model as training data, an efficient student model directly predicts appearance under natural illuminations in real-time. To achieve generalization, we condition the student model with physics-inspired illumination features such as visibility, diffuse shading, and specular reflections computed on a coarse proxy geometry, maintaining a small computational overhead. Our key insight is that these features have strong correlation with subsequent global light transport effects, which proves sufficient as conditioning data for the neural relighting network. Moreover, in contrast to bottleneck illumination conditioning, these features are spatially aligned based on underlying geometry, leading to better generalization to unseen illuminations and poses. In our experiments, we demonstrate the efficacy of our illumination feature representations, outperforming baseline approaches. We also show that our approach can photorealistically relight two interacting hands at real-time speeds. https://sh8.io/#/relightable_hands
Abstract:We propose embodied scene-aware human pose estimation where we estimate 3D poses based on a simulated agent's proprioception and scene awareness, along with external third-person observations. Unlike prior methods that often resort to multistage optimization, non-causal inference, and complex contact modeling to estimate human pose and human scene interactions, our method is one stage, causal, and recovers global 3D human poses in a simulated environment. Since 2D third-person observations are coupled with the camera pose, we propose to disentangle the camera pose and use a multi-step projection gradient defined in the global coordinate frame as the movement cue for our embodied agent. Leveraging a physics simulation and prescanned scenes (e.g., 3D mesh), we simulate our agent in everyday environments (libraries, offices, bedrooms, etc.) and equip our agent with environmental sensors to intelligently navigate and interact with scene geometries. Our method also relies only on 2D keypoints and can be trained on synthetic datasets derived from popular human motion databases. To evaluate, we use the popular H36M and PROX datasets and, for the first time, achieve a success rate of 96.7% on the challenging PROX dataset without ever using PROX motion sequences for training.
Abstract:We present a large-scale stereo RGB image object pose estimation dataset named the $\textbf{StereOBJ-1M}$ dataset. The dataset is designed to address challenging cases such as object transparency, translucency, and specular reflection, in addition to the common challenges of occlusion, symmetry, and variations in illumination and environments. In order to collect data of sufficient scale for modern deep learning models, we propose a novel method for efficiently annotating pose data in a multi-view fashion that allows data capturing in complex and flexible environments. Fully annotated with 6D object poses, our dataset contains over 396K frames and over 1.5M annotations of 18 objects recorded in 183 scenes constructed in 11 different environments. The 18 objects include 8 symmetric objects, 7 transparent objects, and 8 reflective objects. We benchmark two state-of-the-art pose estimation frameworks on StereOBJ-1M as baselines for future work. We also propose a novel object-level pose optimization method for computing 6D pose from keypoint predictions in multiple images.
Abstract:We present KDFNet, a novel method for 6D object pose estimation from RGB images. To handle occlusion, many recent works have proposed to localize 2D keypoints through pixel-wise voting and solve a Perspective-n-Point (PnP) problem for pose estimation, which achieves leading performance. However, such voting process is direction-based and cannot handle long and thin objects where the direction intersections cannot be robustly found. To address this problem, we propose a novel continuous representation called Keypoint Distance Field (KDF) for projected 2D keypoint locations. Formulated as a 2D array, each element of the KDF stores the 2D Euclidean distance between the corresponding image pixel and a specified projected 2D keypoint. We use a fully convolutional neural network to regress the KDF for each keypoint. Using this KDF encoding of projected object keypoint locations, we propose to use a distance-based voting scheme to localize the keypoints by calculating circle intersections in a RANSAC fashion. We validate the design choices of our framework by extensive ablation experiments. Our proposed method achieves state-of-the-art performance on Occlusion LINEMOD dataset with an average ADD(-S) accuracy of 50.3% and TOD dataset mug subset with an average ADD accuracy of 75.72%. Extensive experiments and visualizations demonstrate that the proposed method is able to robustly estimate the 6D pose in challenging scenarios including occlusion.
Abstract:The use of iterative pose refinement is a critical processing step for 6D object pose estimation, and its performance depends greatly on one's choice of image representation. Image representations learned via deep convolutional neural networks (CNN) are currently the method of choice as they are able to robustly encode object keypoint locations. However, CNN-based image representations are computational expensive to use for iterative pose refinement, as they require that image features are extracted using a deep network, once for the input image and multiple times for rendered images during the refinement process. Instead of using a CNN to extract image features from a rendered RGB image, we propose to directly render a deep feature image. We call this deep texture rendering, where a shallow multi-layer perceptron is used to directly regress a view invariant image representation of an object. Using an estimate of the pose and deep texture rendering, our system can render an image representation in under 1ms. This image representation is optimized such that it makes it easier to perform nonlinear 6D pose estimation by adding a differentiable Levenberg-Marquardt optimization network and back-propagating the 6D pose alignment error. We call our method, RePOSE, a Real-time Iterative Rendering and Refinement algorithm for 6D POSE estimation. RePOSE runs at 71 FPS and achieves state-of-the-art accuracy of 51.6% on the Occlusion LineMOD dataset - a 4.1% absolute improvement over the prior art, and comparable performance on the YCB-Video dataset with a much faster runtime than the other pose refinement methods.
Abstract:We propose a method for incorporating object interaction and human body dynamics into the task of 3D ego-pose estimation using a head-mounted camera. We use a kinematics model of the human body to represent the entire range of human motion, and a dynamics model of the body to interact with objects inside a physics simulator. By bringing together object modeling, kinematics modeling, and dynamics modeling in a reinforcement learning (RL) framework, we enable object-aware 3D ego-pose estimation. We devise several representational innovations through the design of the state and action space to incorporate 3D scene context and improve pose estimation quality. We also construct a fine-tuning step to correct the drift and refine the estimated human-object interaction. This is the first work to estimate a physically valid 3D full-body interaction sequence with objects (e.g., chairs, boxes, obstacles) from egocentric videos. Experiments with both controlled and in-the-wild settings show that our method can successfully extract an object-conditioned 3D ego-pose sequence that is consistent with the laws of physics.
Abstract:This paper describes a viewpoint-robust object-based change detection network (OBJ-CDNet). Mobile cameras such as drive recorders capture images from different viewpoints each time due to differences in camera trajectory and shutter timing. However, previous methods for pixel-wise change detection are vulnerable to the viewpoint differences because they assume aligned image pairs as inputs. To cope with the difficulty, we introduce a deep graph matching network that establishes object correspondence between an image pair. The introduction enables us to detect object-wise scene changes without precise image alignment. For more accurate object matching, we propose an epipolar-guided deep graph matching network (EGMNet), which incorporates the epipolar constraint into the deep graph matching layer used in OBJCDNet. To evaluate our network's robustness against viewpoint differences, we created synthetic and real datasets for scene change detection from an image pair. The experimental results verified the effectiveness of our network.