Abstract:Training a Named Entity Recognition (NER) model often involves fixing a taxonomy of entity types. However, requirements evolve and we might need the NER model to recognize additional entity types. A simple approach is to re-annotate entire dataset with both existing and additional entity types and then train the model on the re-annotated dataset. However, this is an extremely laborious task. To remedy this, we propose a novel approach called Partial Label Model (PLM) that uses only partially annotated datasets. We experiment with 6 diverse datasets and show that PLM consistently performs better than most other approaches (0.5 - 2.5 F1), including in novel settings for taxonomy expansion not considered in prior work. The gap between PLM and all other approaches is especially large in settings where there is limited data available for the additional entity types (as much as 11 F1), thus suggesting a more cost effective approaches to taxonomy expansion.
Abstract:The recently proposed CheckList (Riberio et al,. 2020) approach to evaluation of NLP systems has revealed high failure rates for basic capabilities for multiple state-of-the-art and commercial models. However, the CheckList creation process is manual which creates a bottleneck towards creation of multilingual CheckLists catering 100s of languages. In this work, we explore multiple approaches to generate and evaluate the quality of Multilingual CheckList. We device an algorithm -- Automated Multilingual Checklist Generation (AMCG) for automatically transferring a CheckList from a source to a target language that relies on a reasonable machine translation system. We then compare the CheckList generated by AMCG with CheckLists generated with different levels of human intervention. Through in-depth crosslingual experiments between English and Hindi, and broad multilingual experiments spanning 11 languages, we show that the automatic approach can provide accurate estimates of failure rates of a model across capabilities, as would a human-verified CheckList, and better than CheckLists generated by humans from scratch.
Abstract:Several instance-based explainability methods for finding influential training examples for test-time decisions have been proposed recently, including Influence Functions, TraceIn, Representer Point Selection, Grad-Dot, and Grad-Cos. Typically these methods are evaluated using LOO influence (Cook's distance) as a gold standard, or using various heuristics. In this paper, we show that all of the above methods are unstable, i.e., extremely sensitive to initialization, ordering of the training data, and batch size. We suggest that this is a natural consequence of how in the literature, the influence of examples is assumed to be independent of model state and other examples -- and argue it is not. We show that LOO influence and heuristics are, as a result, poor metrics to measure the quality of instance-based explanations, and instead propose to evaluate such explanations by their ability to detect poisoning attacks. Further, we provide a simple, yet effective baseline to improve all of the above methods and show how it leads to very significant improvements on downstream tasks.
Abstract:Multilingual language models achieve impressive zero-shot accuracies in many languages in complex tasks such as Natural Language Inference (NLI). Examples in NLI (and equivalent complex tasks) often pertain to various types of sub-tasks, requiring different kinds of reasoning. Certain types of reasoning have proven to be more difficult to learn in a monolingual context, and in the crosslingual context, similar observations may shed light on zero-shot transfer efficiency and few-shot sample selection. Hence, to investigate the effects of types of reasoning on transfer performance, we propose a category-annotated multilingual NLI dataset and discuss the challenges to scale monolingual annotations to multiple languages. We statistically observe interesting effects that the confluence of reasoning types and language similarities have on transfer performance.
Abstract:Multilingual BERT (M-BERT) has been a huge success in both supervised and zero-shot cross-lingual transfer learning. However, this success has focused only on the top 104 languages in Wikipedia that it was trained on. In this paper, we propose a simple but effective approach to extend M-BERT (E-BERT) so that it can benefit any new language, and show that our approach benefits languages that are already in M-BERT as well. We perform an extensive set of experiments with Named Entity Recognition (NER) on 27 languages, only 16 of which are in M-BERT, and show an average increase of about 6% F1 on languages that are already in M-BERT and 23% F1 increase on new languages.
Abstract:Recent work has exhibited the surprising cross-lingual abilities of multilingual BERT (M-BERT) -- surprising since it is trained without any cross-lingual objective and with no aligned data. In this work, we provide a comprehensive study of the contribution of different components in M-BERT to its cross-lingual ability. We study the impact of linguistic properties of the languages, the architecture of the model, and the learning objectives. The experimental study is done in the context of three typologically different languages -- Spanish, Hindi, and Russian -- and using two conceptually different NLP tasks, textual entailment and named entity recognition. Among our key conclusions is the fact that the lexical overlap between languages plays a negligible role in the cross-lingual success, while the depth of the network is an integral part of it.
Abstract:Despite the effectiveness of multitask deep neural network (MTDNN), there is a limited theoretical understanding on how the information is shared across different tasks in MTDNN. In this work, we establish a formal connection between MTDNN with infinitely-wide hidden layers and multitask Gaussian Process (GP). We derive multitask GP kernels corresponding to both single-layer and deep multitask Bayesian neural networks (MTBNN) and show that information among different tasks is shared primarily due to correlation across last layer weights of MTBNN and shared hyper-parameters, which is contrary to the popular hypothesis that information is shared because of shared intermediate layer weights. Our construction enables using multitask GP to perform efficient Bayesian inference for the equivalent MTDNN with infinitely-wide hidden layers. Prior work on the connection between deep neural networks and GP for single task settings can be seen as special cases of our construction. We also present an adaptive multitask neural network architecture that corresponds to a multitask GP with more flexible kernels, such as Linear Model of Coregionalization (LMC) and Cross-Coregionalization (CC) kernels. We provide experimental results to further illustrate these ideas on synthetic and real datasets.