Abstract:Zero-shot cross-lingual transfer is promising, however has been shown to be sub-optimal, with inferior transfer performance across low-resource languages. In this work, we envision languages as domains for improving zero-shot transfer by jointly reducing the feature incongruity between the source and the target language and increasing the generalization capabilities of pre-trained multilingual transformers. We show that our approach, DiTTO, significantly outperforms the standard zero-shot fine-tuning method on multiple datasets across all languages using solely unlabeled instances in the target language. Empirical results show that jointly reducing feature incongruity for multiple target languages is vital for successful cross-lingual transfer. Moreover, our model enables better cross-lingual transfer than standard fine-tuning methods, even in the few-shot setting.
Abstract:Leveraging shared learning through Massively Multilingual Models, state-of-the-art machine translation models are often able to adapt to the paucity of data for low-resource languages. However, this performance comes at the cost of significantly bloated models which are not practically deployable. Knowledge Distillation is one popular technique to develop competitive, lightweight models: In this work, we first evaluate its use to compress MT models focusing on languages with extremely limited training data. Through our analysis across 8 languages, we find that the variance in the performance of the distilled models due to their dependence on priors including the amount of synthetic data used for distillation, the student architecture, training hyperparameters and confidence of the teacher models, makes distillation a brittle compression mechanism. To mitigate this, we explore the use of post-training quantization for the compression of these models. Here, we find that while distillation provides gains across some low-resource languages, quantization provides more consistent performance trends for the entire range of languages, especially the lowest-resource languages in our target set.
Abstract:Few-shot transfer often shows substantial gain over zero-shot transfer~\cite{lauscher2020zero}, which is a practically useful trade-off between fully supervised and unsupervised learning approaches for multilingual pretrained model-based systems. This paper explores various strategies for selecting data for annotation that can result in a better few-shot transfer. The proposed approaches rely on multiple measures such as data entropy using $n$-gram language model, predictive entropy, and gradient embedding. We propose a loss embedding method for sequence labeling tasks, which induces diversity and uncertainty sampling similar to gradient embedding. The proposed data selection strategies are evaluated and compared for POS tagging, NER, and NLI tasks for up to 20 languages. Our experiments show that the gradient and loss embedding-based strategies consistently outperform random data selection baselines, with gains varying with the initial performance of the zero-shot transfer. Furthermore, the proposed method shows similar trends in improvement even when the model is fine-tuned using a lower proportion of the original task-specific labeled training data for zero-shot transfer.
Abstract:Although recent Massively Multilingual Language Models (MMLMs) like mBERT and XLMR support around 100 languages, most existing multilingual NLP benchmarks provide evaluation data in only a handful of these languages with little linguistic diversity. We argue that this makes the existing practices in multilingual evaluation unreliable and does not provide a full picture of the performance of MMLMs across the linguistic landscape. We propose that the recent work done in Performance Prediction for NLP tasks can serve as a potential solution in fixing benchmarking in Multilingual NLP by utilizing features related to data and language typology to estimate the performance of an MMLM on different languages. We compare performance prediction with translating test data with a case study on four different multilingual datasets, and observe that these methods can provide reliable estimates of the performance that are often on-par with the translation based approaches, without the need for any additional translation as well as evaluation costs.
Abstract:Borrowing ideas from {\em Production functions} in micro-economics, in this paper we introduce a framework to systematically evaluate the performance and cost trade-offs between machine-translated and manually-created labelled data for task-specific fine-tuning of massively multilingual language models. We illustrate the effectiveness of our framework through a case-study on the TyDIQA-GoldP dataset. One of the interesting conclusions of the study is that if the cost of machine translation is greater than zero, the optimal performance at least cost is always achieved with at least some or only manually-created data. To our knowledge, this is the first attempt towards extending the concept of production functions to study data collection strategies for training multilingual models, and can serve as a valuable tool for other similar cost vs data trade-offs in NLP.
Abstract:Massively Multilingual Transformer based Language Models have been observed to be surprisingly effective on zero-shot transfer across languages, though the performance varies from language to language depending on the pivot language(s) used for fine-tuning. In this work, we build upon some of the existing techniques for predicting the zero-shot performance on a task, by modeling it as a multi-task learning problem. We jointly train predictive models for different tasks which helps us build more accurate predictors for tasks where we have test data in very few languages to measure the actual performance of the model. Our approach also lends us the ability to perform a much more robust feature selection and identify a common set of features that influence zero-shot performance across a variety of tasks.
Abstract:The recently proposed CheckList (Riberio et al,. 2020) approach to evaluation of NLP systems has revealed high failure rates for basic capabilities for multiple state-of-the-art and commercial models. However, the CheckList creation process is manual which creates a bottleneck towards creation of multilingual CheckLists catering 100s of languages. In this work, we explore multiple approaches to generate and evaluate the quality of Multilingual CheckList. We device an algorithm -- Automated Multilingual Checklist Generation (AMCG) for automatically transferring a CheckList from a source to a target language that relies on a reasonable machine translation system. We then compare the CheckList generated by AMCG with CheckLists generated with different levels of human intervention. Through in-depth crosslingual experiments between English and Hindi, and broad multilingual experiments spanning 11 languages, we show that the automatic approach can provide accurate estimates of failure rates of a model across capabilities, as would a human-verified CheckList, and better than CheckLists generated by humans from scratch.
Abstract:Recent advancements in NLP have given us models like mBERT and XLMR that can serve over 100 languages. The languages that these models are evaluated on, however, are very few in number, and it is unlikely that evaluation datasets will cover all the languages that these models support. Potential solutions to the costly problem of dataset creation are to translate datasets to new languages or use template-filling based techniques for creation. This paper proposes an alternate solution for evaluating a model across languages which make use of the existing performance scores of the model on languages that a particular task has test sets for. We train a predictor on these performance scores and use this predictor to predict the model's performance in different evaluation settings. Our results show that our method is effective in filling the gaps in the evaluation for an existing set of languages, but might require additional improvements if we want it to generalize to unseen languages.
Abstract:Deep Contextual Language Models (LMs) like ELMO, BERT, and their successors dominate the landscape of Natural Language Processing due to their ability to scale across multiple tasks rapidly by pre-training a single model, followed by task-specific fine-tuning. Furthermore, multilingual versions of such models like XLM-R and mBERT have given promising results in zero-shot cross-lingual transfer, potentially enabling NLP applications in many under-served and under-resourced languages. Due to this initial success, pre-trained models are being used as `Universal Language Models' as the starting point across diverse tasks, domains, and languages. This work explores the notion of `Universality' by identifying seven dimensions across which a universal model should be able to scale, that is, perform equally well or reasonably well, to be useful across diverse settings. We outline the current theoretical and empirical results that support model performance across these dimensions, along with extensions that may help address some of their current limitations. Through this survey, we lay the foundation for understanding the capabilities and limitations of massive contextual language models and help discern research gaps and directions for future work to make these LMs inclusive and fair to diverse applications, users, and linguistic phenomena.
Abstract:Code-switching is the use of more than one language in the same conversation or utterance. Recently, multilingual contextual embedding models, trained on multiple monolingual corpora, have shown promising results on cross-lingual and multilingual tasks. We present an evaluation benchmark, GLUECoS, for code-switched languages, that spans several NLP tasks in English-Hindi and English-Spanish. Specifically, our evaluation benchmark includes Language Identification from text, POS tagging, Named Entity Recognition, Sentiment Analysis, Question Answering and a new task for code-switching, Natural Language Inference. We present results on all these tasks using cross-lingual word embedding models and multilingual models. In addition, we fine-tune multilingual models on artificially generated code-switched data. Although multilingual models perform significantly better than cross-lingual models, our results show that in most tasks, across both language pairs, multilingual models fine-tuned on code-switched data perform best, showing that multilingual models can be further optimized for code-switching tasks.