Picture for Hannes Kenngott

Hannes Kenngott

Department of General, Visceral and Transplant Surgery, University of Heidelberg, Heidelberg

Understanding metric-related pitfalls in image analysis validation

Add code
Feb 09, 2023
Viaarxiv icon

Metrics reloaded: Pitfalls and recommendations for image analysis validation

Add code
Jun 03, 2022
Figure 1 for Metrics reloaded: Pitfalls and recommendations for image analysis validation
Figure 2 for Metrics reloaded: Pitfalls and recommendations for image analysis validation
Figure 3 for Metrics reloaded: Pitfalls and recommendations for image analysis validation
Figure 4 for Metrics reloaded: Pitfalls and recommendations for image analysis validation
Viaarxiv icon

Surgical Data Science -- from Concepts to Clinical Translation

Add code
Oct 30, 2020
Figure 1 for Surgical Data Science -- from Concepts to Clinical Translation
Figure 2 for Surgical Data Science -- from Concepts to Clinical Translation
Figure 3 for Surgical Data Science -- from Concepts to Clinical Translation
Figure 4 for Surgical Data Science -- from Concepts to Clinical Translation
Viaarxiv icon

Robust Medical Instrument Segmentation Challenge 2019

Add code
Mar 23, 2020
Figure 1 for Robust Medical Instrument Segmentation Challenge 2019
Figure 2 for Robust Medical Instrument Segmentation Challenge 2019
Figure 3 for Robust Medical Instrument Segmentation Challenge 2019
Figure 4 for Robust Medical Instrument Segmentation Challenge 2019
Viaarxiv icon

Prediction of laparoscopic procedure duration using unlabeled, multimodal sensor data

Add code
Nov 08, 2018
Figure 1 for Prediction of laparoscopic procedure duration using unlabeled, multimodal sensor data
Figure 2 for Prediction of laparoscopic procedure duration using unlabeled, multimodal sensor data
Figure 3 for Prediction of laparoscopic procedure duration using unlabeled, multimodal sensor data
Figure 4 for Prediction of laparoscopic procedure duration using unlabeled, multimodal sensor data
Viaarxiv icon

Real-time image-based instrument classification for laparoscopic surgery

Add code
Aug 01, 2018
Figure 1 for Real-time image-based instrument classification for laparoscopic surgery
Figure 2 for Real-time image-based instrument classification for laparoscopic surgery
Figure 3 for Real-time image-based instrument classification for laparoscopic surgery
Figure 4 for Real-time image-based instrument classification for laparoscopic surgery
Viaarxiv icon

Comparative evaluation of instrument segmentation and tracking methods in minimally invasive surgery

Add code
May 07, 2018
Figure 1 for Comparative evaluation of instrument segmentation and tracking methods in minimally invasive surgery
Figure 2 for Comparative evaluation of instrument segmentation and tracking methods in minimally invasive surgery
Figure 3 for Comparative evaluation of instrument segmentation and tracking methods in minimally invasive surgery
Figure 4 for Comparative evaluation of instrument segmentation and tracking methods in minimally invasive surgery
Viaarxiv icon

Exploiting the potential of unlabeled endoscopic video data with self-supervised learning

Add code
Jan 31, 2018
Figure 1 for Exploiting the potential of unlabeled endoscopic video data with self-supervised learning
Figure 2 for Exploiting the potential of unlabeled endoscopic video data with self-supervised learning
Figure 3 for Exploiting the potential of unlabeled endoscopic video data with self-supervised learning
Figure 4 for Exploiting the potential of unlabeled endoscopic video data with self-supervised learning
Viaarxiv icon

Unsupervised temporal context learning using convolutional neural networks for laparoscopic workflow analysis

Add code
Feb 13, 2017
Figure 1 for Unsupervised temporal context learning using convolutional neural networks for laparoscopic workflow analysis
Figure 2 for Unsupervised temporal context learning using convolutional neural networks for laparoscopic workflow analysis
Figure 3 for Unsupervised temporal context learning using convolutional neural networks for laparoscopic workflow analysis
Figure 4 for Unsupervised temporal context learning using convolutional neural networks for laparoscopic workflow analysis
Viaarxiv icon