Abstract:Existing fairness benchmarks for large language models (LLMs) primarily focus on simple tasks, such as multiple-choice questions, overlooking biases that may arise in more complex scenarios like long-text generation. To address this gap, we introduce the Long Text Fairness Test (LTF-TEST), a framework that evaluates biases in LLMs through essay-style prompts. LTF-TEST covers 14 topics and 10 demographic axes, including gender and race, resulting in 11,948 samples. By assessing both model responses and the reasoning behind them, LTF-TEST uncovers subtle biases that are difficult to detect in simple responses. In our evaluation of five recent LLMs, including GPT-4o and LLaMa3, we identify two key patterns of bias. First, these models frequently favor certain demographic groups in their responses. Second, they show excessive sensitivity toward traditionally disadvantaged groups, often providing overly protective responses while neglecting others. To mitigate these biases, we propose FT-REGARD, a finetuning approach that pairs biased prompts with neutral responses. FT-REGARD reduces gender bias by 34.6% and improves performance by 1.4 percentage points on the BBQ benchmark, offering a promising approach to addressing biases in long-text generation tasks.
Abstract:Visual arguments, often used in advertising or social causes, rely on images to persuade viewers to do or believe something. Understanding these arguments requires selective vision: only specific visual stimuli within an image are relevant to the argument, and relevance can only be understood within the context of a broader argumentative structure. While visual arguments are readily appreciated by human audiences, we ask: are today's AI capable of similar understanding? We collect and release VisArgs, an annotated corpus designed to make explicit the (usually implicit) structures underlying visual arguments. VisArgs includes 1,611 images accompanied by three types of textual annotations: 5,112 visual premises (with region annotations), 5,574 commonsense premises, and reasoning trees connecting them to a broader argument. We propose three tasks over VisArgs to probe machine capacity for visual argument understanding: localization of premises, identification of premises, and deduction of conclusions. Experiments demonstrate that 1) machines cannot fully identify the relevant visual cues. The top-performing model, GPT-4-O, achieved an accuracy of only 78.5%, whereas humans reached 98.0%. All models showed a performance drop, with an average decrease in accuracy of 19.5%, when the comparison set was changed from objects outside the image to irrelevant objects within the image. Furthermore, 2) this limitation is the greatest factor impacting their performance in understanding visual arguments. Most models improved the most when given relevant visual premises as additional inputs, compared to other inputs, for deducing the conclusion of the visual argument.
Abstract:To align large language models with human preferences, existing research either utilizes a separate reward model (RM) to perform on-policy learning or simplifies the training procedure by discarding the on-policy learning and the need for a separate RM. In this paper, we present a novel alignment framework, SELF-JUDGE that is (1) on-policy learning and 2) parameter efficient, as it does not require an additional RM for evaluating the samples for on-policy learning. To this end, we propose Judge-augmented Supervised Fine-Tuning (JSFT) to train a single model acting as both a policy and a judge. Specifically, we view the pairwise judgment task as a special case of the instruction-following task, choosing the better response from a response pair. Thus, the resulting model can judge preferences of on-the-fly responses from current policy initialized from itself. Experimental results show the efficacy of SELF-JUDGE, outperforming baselines in preference benchmarks. We also show that self-rejection with oversampling can improve further without an additional evaluator. Our code is available at https://github.com/oddqueue/self-judge.
Abstract:The rapid progress of AI is fueled by increasingly large and computationally intensive machine learning models and datasets. As a consequence, the amount of compute used in training state-of-the-art models is exponentially increasing (doubling every 10 months between 2015 and 2022), resulting in a large carbon footprint. Federated Learning (FL) - a collaborative machine learning technique for training a centralized model using data of decentralized entities - can also be resource-intensive and have a significant carbon footprint, particularly when deployed at scale. Unlike centralized AI that can reliably tap into renewables at strategically placed data centers, cross-device FL may leverage as many as hundreds of millions of globally distributed end-user devices with diverse energy sources. Green AI is a novel and important research area where carbon footprint is regarded as an evaluation criterion for AI, alongside accuracy, convergence speed, and other metrics. In this paper, we propose the concept of Green FL, which involves optimizing FL parameters and making design choices to minimize carbon emissions consistent with competitive performance and training time. The contributions of this work are two-fold. First, we adopt a data-driven approach to quantify the carbon emissions of FL by directly measuring real-world at-scale FL tasks running on millions of phones. Second, we present challenges, guidelines, and lessons learned from studying the trade-off between energy efficiency, performance, and time-to-train in a production FL system. Our findings offer valuable insights into how FL can reduce its carbon footprint, and they provide a foundation for future research in the area of Green AI.
Abstract:Cross-device Federated Learning is an increasingly popular machine learning setting to train a model by leveraging a large population of client devices with high privacy and security guarantees. However, communication efficiency remains a major bottleneck when scaling federated learning to production environments, particularly due to bandwidth constraints during uplink communication. In this paper, we formalize and address the problem of compressing client-to-server model updates under the Secure Aggregation primitive, a core component of Federated Learning pipelines that allows the server to aggregate the client updates without accessing them individually. In particular, we adapt standard scalar quantization and pruning methods to Secure Aggregation and propose Secure Indexing, a variant of Secure Aggregation that supports quantization for extreme compression. We establish state-of-the-art results on LEAF benchmarks in a secure Federated Learning setup with up to 40$\times$ compression in uplink communication with no meaningful loss in utility compared to uncompressed baselines.
Abstract:Cross-device Federated Learning (FL) is a distributed learning paradigm with several challenges that differentiate it from traditional distributed learning, variability in the system characteristics on each device, and millions of clients coordinating with a central server being primary ones. Most FL systems described in the literature are synchronous - they perform a synchronized aggregation of model updates from individual clients. Scaling synchronous FL is challenging since increasing the number of clients training in parallel leads to diminishing returns in training speed, analogous to large-batch training. Moreover, stragglers hinder synchronous FL training. In this work, we outline a production asynchronous FL system design. Our work tackles the aforementioned issues, sketches of some of the system design challenges and their solutions, and touches upon principles that emerged from building a production FL system for millions of clients. Empirically, we demonstrate that asynchronous FL converges faster than synchronous FL when training across nearly one hundred million devices. In particular, in high concurrency settings, asynchronous FL is 5x faster and has nearly 8x less communication overhead than synchronous FL.
Abstract:We introduce Opacus, a free, open-source PyTorch library for training deep learning models with differential privacy (hosted at opacus.ai). Opacus is designed for simplicity, flexibility, and speed. It provides a simple and user-friendly API, and enables machine learning practitioners to make a training pipeline private by adding as little as two lines to their code. It supports a wide variety of layers, including multi-head attention, convolution, LSTM, and embedding, right out of the box, and it also provides the means for supporting other user-defined layers. Opacus computes batched per-sample gradients, providing better efficiency compared to the traditional "micro batch" approach. In this paper we present Opacus, detail the principles that drove its implementation and unique features, and compare its performance against other frameworks for differential privacy in ML.
Abstract:Federated Learning (FL) trains a shared model across distributed devices while keeping the training data on the devices. Most FL schemes are synchronous: they perform a synchronized aggregation of model updates from individual devices. Synchronous training can be slow because of late-arriving devices (stragglers). On the other hand, completely asynchronous training makes FL less private because of incompatibility with secure aggregation. In this work, we propose a model aggregation scheme, FedBuff, that combines the best properties of synchronous and asynchronous FL. Similar to synchronous FL, FedBuff is compatible with secure aggregation. Similar to asynchronous FL, FedBuff is robust to stragglers. In FedBuff, clients trains asynchronously and send updates to the server. The server aggregates client updates in a private buffer until updates have been received, at which point a server model update is immediately performed. We provide theoretical convergence guarantees for FedBuff in a non-convex setting. Empirically, FedBuff converges up to 3.8x faster than previous proposals for synchronous FL (e.g., FedAvgM), and up to 2.5x faster than previous proposals for asynchronous FL (e.g., FedAsync). We show that FedBuff is robust to different staleness distributions and is more scalable than synchronous FL techniques.
Abstract:When a neural network is partitioned and distributed across physical nodes, failure of physical nodes causes the failure of the neural units that are placed on those nodes, which results in a significant performance drop. Current approaches focus on resiliency of training in distributed neural networks. However, resiliency of inference in distributed neural networks is less explored. We introduce ResiliNet, a scheme for making inference in distributed neural networks resilient to physical node failures. ResiliNet combines two concepts to provide resiliency: skip connection in residual neural networks, and a novel technique called failout, which is introduced in this paper. Failout simulates physical node failure conditions during training using dropout, and is specifically designed to improve the resiliency of distributed neural networks. The results of the experiments and ablation studies using three datasets confirm the ability of ResiliNet to provide inference resiliency for distributed neural networks.
Abstract:Partitioning and distributing deep neural networks (DNNs) over physical nodes such as edge, fog, or cloud nodes, could enhance sensor fusion, and reduce bandwidth and inference latency. However, when a DNN is distributed over physical nodes, failure of the physical nodes causes the failure of the DNN units that are placed on these nodes. The performance of the inference task will be unpredictable, and most likely, poor, if the distributed DNN is not specifically designed and properly trained for failures. Motivated by this, we introduce deepFogGuard, a DNN architecture augmentation scheme for making the distributed DNN inference task failure-resilient. To articulate deepFogGuard, we introduce the elements and a model for the resiliency of distributed DNN inference. Inspired by the concept of residual connections in DNNs, we introduce skip hyperconnections in distributed DNNs, which are the basis of deepFogGuard's design to provide resiliency. Next, our extensive experiments using two existing datasets for the sensing and vision applications confirm the ability of deepFogGuard to provide resiliency for distributed DNNs in edge-cloud networks.