Abstract:Retrieval-Augmented Generation (RAG) has emerged as a promising framework to mitigate hallucinations in Large Language Models (LLMs), yet its overall performance is dependent on the underlying retrieval system. In the finance domain, documents such as 10-K reports pose distinct challenges due to domain-specific vocabulary and multi-hierarchical tabular data. In this work, we introduce an efficient, end-to-end RAG pipeline that enhances retrieval for financial documents through a three-phase approach: pre-retrieval, retrieval, and post-retrieval. In the pre-retrieval phase, various query and corpus preprocessing techniques are employed to enrich input data. During the retrieval phase, we fine-tuned state-of-the-art (SOTA) embedding models with domain-specific knowledge and implemented a hybrid retrieval strategy that combines dense and sparse representations. Finally, the post-retrieval phase leverages Direct Preference Optimization (DPO) training and document selection methods to further refine the results. Evaluations on seven financial question answering datasets-FinDER, FinQABench, FinanceBench, TATQA, FinQA, ConvFinQA, and MultiHiertt-demonstrate substantial improvements in retrieval performance, leading to more accurate and contextually appropriate generation. These findings highlight the critical role of tailored retrieval techniques in advancing the effectiveness of RAG systems for financial applications. A fully replicable pipeline is available on GitHub: https://github.com/seohyunwoo-0407/GAR.
Abstract:Despite extensive safety enhancements in large language models (LLMs), multi-turn "jailbreak" conversations crafted by skilled human adversaries can still breach even the most sophisticated guardrails. However, these multi-turn attacks demand considerable manual effort, limiting their scalability. In this work, we introduce a novel approach called Multi-turn-to-Single-turn (M2S) that systematically converts multi-turn jailbreak prompts into single-turn attacks. Specifically, we propose three conversion strategies - Hyphenize, Numberize, and Pythonize - each preserving sequential context yet packaging it in a single query. Our experiments on the Multi-turn Human Jailbreak (MHJ) dataset show that M2S often increases or maintains high Attack Success Rates (ASRs) compared to original multi-turn conversations. Notably, using a StrongREJECT-based evaluation of harmfulness, M2S achieves up to 95.9% ASR on Mistral-7B and outperforms original multi-turn prompts by as much as 17.5% in absolute improvement on GPT-4o. Further analysis reveals that certain adversarial tactics, when consolidated into a single prompt, exploit structural formatting cues to evade standard policy checks. These findings underscore that single-turn attacks - despite being simpler and cheaper to conduct - can be just as potent, if not more, than their multi-turn counterparts. Our findings underscore the urgent need to reevaluate and reinforce LLM safety strategies, given how adversarial queries can be compacted into a single prompt while still retaining sufficient complexity to bypass existing safety measures.
Abstract:With the growing scale and complexity of video data, efficiently processing long video sequences poses significant challenges due to the quadratic increase in memory and computational demands associated with existing transformer-based Large Multi-modal Models (LMMs). To address these issues, we introduce Video-Ma$^2$mba, a novel architecture that incorporates State Space Models (SSMs) within the Mamba-2 framework, replacing the attention mechanisms. This allows the LMMs to scale linearly in terms of time and memory requirements, making it feasible to handle long-duration video content. Furthermore, we enhance the memory efficiency introducing the Multi-Axis Gradient Checkpointing (MA-GC) method, which strategically manages memory by retaining only essential activations across multiple computational axes. Our approach significantly reduces the memory footprint compared to standard gradient checkpointing. Empirical analyses show that Video-Ma$^2$mba can process extensive video sequences-equivalent to millions of tokens or over two hours of continuous sequences at 1 FPS-on a single GPU. By maintaining a detailed capture of temporal dynamics, our model improves the accuracy and relevance of responses in long video understanding tasks, demonstrating substantial advantages over existing frameworks.
Abstract:Despite advances in Large Multi-modal Models, applying them to long and untrimmed video content remains challenging due to limitations in context length and substantial memory overhead. These constraints often lead to significant information loss and reduced relevance in the model responses. With the exponential growth of video data across web platforms, understanding long-form video is crucial for advancing generalized intelligence. In this paper, we introduce SALOVA: Segment-Augmented LOng Video Assistant, a novel video-LLM framework designed to enhance the comprehension of lengthy video content through targeted retrieval process. We address two main challenges to achieve it: (i) We present the SceneWalk dataset, a high-quality collection of 87.8K long videos, each densely captioned at the segment level to enable models to capture scene continuity and maintain rich descriptive context. (ii) We develop robust architectural designs integrating dynamic routing mechanism and spatio-temporal projector to efficiently retrieve and process relevant video segments based on user queries. Our framework mitigates the limitations of current video-LMMs by allowing for precise identification and retrieval of relevant video segments in response to queries, thereby improving the contextual relevance of the generated responses. Through extensive experiments, SALOVA demonstrates enhanced capability in processing complex long-form videos, showing significant capability to maintain contextual integrity across extended sequences.
Abstract:Lip reading aims to predict spoken language by analyzing lip movements. Despite advancements in lip reading technologies, performance degrades when models are applied to unseen speakers due to their sensitivity to variations in visual information such as lip appearances. To address this challenge, speaker adaptive lip reading technologies have advanced by focusing on effectively adapting a lip reading model to target speakers in the visual modality. The effectiveness of adapting language information, such as vocabulary choice, of the target speaker has not been explored in the previous works. Moreover, existing datasets for speaker adaptation have limited vocabulary size and pose variations, limiting the validation of previous speaker-adaptive methods in real-world scenarios. To address these issues, we propose a novel speaker-adaptive lip reading method that adapts a pre-trained model to target speakers at both vision and language levels. Specifically, we integrate prompt tuning and the LoRA approach, applying them to a pre-trained lip reading model to effectively adapt the model to target speakers. In addition, to validate its effectiveness in real-world scenarios, we introduce a new dataset, VoxLRS-SA, derived from VoxCeleb2 and LRS3. It contains a vocabulary of approximately 100K words, offers diverse pose variations, and enables the validation of adaptation methods in wild, sentence-level lip reading for the first time. Through various experiments, we demonstrate that the existing speaker-adaptive method also improves performance in the wild at the sentence level. Moreover, with the proposed adaptation method, we show that the proposed method achieves larger improvements when applied to the target speaker, compared to the previous works.
Abstract:Large Multi-modal Models (LMMs) have recently demonstrated remarkable abilities in visual context understanding and coherent response generation. However, alongside these advancements, the issue of hallucinations has emerged as a significant challenge, producing erroneous responses that are unrelated to the visual contents. In this paper, we introduce a novel contrastive-based decoding method, COuntering DEscription Contrastive Decoding (CODE), which leverages self-generated descriptions as contrasting references during the decoding phase of LMMs to address hallucination issues. CODE utilizes the comprehensive descriptions from model itself as visual counterpart to correct and improve response alignment with actual visual content. By dynamically adjusting the information flow and distribution of next-token predictions in the LMM's vocabulary, CODE enhances the coherence and informativeness of generated responses. Extensive experiments demonstrate that our method significantly reduces hallucinations and improves cross-modal consistency across various benchmarks and cutting-edge LMMs. Our method provides a simple yet effective decoding strategy that can be integrated to existing LMM frameworks without additional training.
Abstract:Pedestrian detection is a crucial field of computer vision research which can be adopted in various real-world applications (e.g., self-driving systems). However, despite noticeable evolution of pedestrian detection, pedestrian representations learned within a detection framework are usually limited to particular scene data in which they were trained. Therefore, in this paper, we propose a novel approach to construct versatile pedestrian knowledge bank containing representative pedestrian knowledge which can be applicable to various detection frameworks and adopted in diverse scenes. We extract generalized pedestrian knowledge from a large-scale pretrained model, and we curate them by quantizing most representative features and guiding them to be distinguishable from background scenes. Finally, we construct versatile pedestrian knowledge bank which is composed of such representations, and then we leverage it to complement and enhance pedestrian features within a pedestrian detection framework. Through comprehensive experiments, we validate the effectiveness of our method, demonstrating its versatility and outperforming state-of-the-art detection performances.
Abstract:Openness is critical for the advancement of science. In particular, recent rapid progress in AI has been made possible only by various open-source models, datasets, and libraries. However, this openness also means that technologies can be freely used for socially harmful purposes. Can open-source models or datasets be used for malicious purposes? If so, how easy is it to adapt technology for such goals? Here, we conduct a case study in the legal domain, a realm where individual decisions can have profound social consequences. To this end, we build EVE, a dataset consisting of 200 examples of questions and corresponding answers about criminal activities based on 200 Korean precedents. We found that a widely accepted open-source LLM, which initially refuses to answer unethical questions, can be easily tuned with EVE to provide unethical and informative answers about criminal activities. This implies that although open-source technologies contribute to scientific progress, some care must be taken to mitigate possible malicious use cases. Warning: This paper contains contents that some may find unethical.
Abstract:Large language models (LLMs) have shown their capability in understanding contextual and semantic information regarding appearance knowledge of instances. In this paper, we introduce a novel approach to utilize the strength of an LLM in understanding contextual appearance variations and to leverage its knowledge into a vision model (here, pedestrian detection). While pedestrian detection is considered one of crucial tasks directly related with our safety (e.g., intelligent driving system), it is challenging because of varying appearances and poses in diverse scenes. Therefore, we propose to formulate language-driven appearance knowledge units and incorporate them with visual cues in pedestrian detection. To this end, we establish description corpus which includes numerous narratives describing various appearances of pedestrians and others. By feeding them through an LLM, we extract appearance knowledge sets that contain the representations of appearance variations. After that, we perform a task-prompting process to obtain appearance knowledge units which are representative appearance knowledge guided to be relevant to a downstream pedestrian detection task. Finally, we provide plentiful appearance information by integrating the language-driven knowledge units with visual cues. Through comprehensive experiments with various pedestrian detectors, we verify the effectiveness of our method showing noticeable performance gains and achieving state-of-the-art detection performance.
Abstract:Lip reading aims to predict speech based on lip movements alone. As it focuses on visual information to model the speech, its performance is inherently sensitive to personal lip appearances and movements. This makes the lip reading models show degraded performance when they are applied to unseen speakers due to the mismatch between training and testing conditions. Speaker adaptation technique aims to reduce this mismatch between train and test speakers, thus guiding a trained model to focus on modeling the speech content without being intervened by the speaker variations. In contrast to the efforts made in audio-based speech recognition for decades, the speaker adaptation methods have not well been studied in lip reading. In this paper, to remedy the performance degradation of lip reading model on unseen speakers, we propose a speaker-adaptive lip reading method, namely user-dependent padding. The user-dependent padding is a speaker-specific input that can participate in the visual feature extraction stage of a pre-trained lip reading model. Therefore, the lip appearances and movements information of different speakers can be considered during the visual feature encoding, adaptively for individual speakers. Moreover, the proposed method does not need 1) any additional layers, 2) to modify the learned weights of the pre-trained model, and 3) the speaker label of train data used during pre-train. It can directly adapt to unseen speakers by learning the user-dependent padding only, in a supervised or unsupervised manner. Finally, to alleviate the speaker information insufficiency in public lip reading databases, we label the speaker of a well-known audio-visual database, LRW, and design an unseen-speaker lip reading scenario named LRW-ID.