Abstract:This work tackles the fidelity objective in the perceptual super-resolution~(SR). Specifically, we address the shortcomings of pixel-level $L_\text{p}$ loss ($\mathcal{L}_\text{pix}$) in the GAN-based SR framework. Since $L_\text{pix}$ is known to have a trade-off relationship against perceptual quality, prior methods often multiply a small scale factor or utilize low-pass filters. However, this work shows that these circumventions fail to address the fundamental factor that induces blurring. Accordingly, we focus on two points: 1) precisely discriminating the subcomponent of $L_\text{pix}$ that contributes to blurring, and 2) only guiding based on the factor that is free from this trade-off relationship. We show that they can be achieved in a surprisingly simple manner, with an Auto-Encoder (AE) pretrained with $L_\text{pix}$. Accordingly, we propose the Auto-Encoded Supervision for Optimal Penalization loss ($L_\text{AESOP}$), a novel loss function that measures distance in the AE space, instead of the raw pixel space. Note that the AE space indicates the space after the decoder, not the bottleneck. By simply substituting $L_\text{pix}$ with $L_\text{AESOP}$, we can provide effective reconstruction guidance without compromising perceptual quality. Designed for simplicity, our method enables easy integration into existing SR frameworks. Experimental results verify that AESOP can lead to favorable results in the perceptual SR task.
Abstract:Recent deep-learning-based single image super-resolution (SISR) methods have shown impressive performance whereas typical methods train their networks by minimizing the pixel-wise distance with respect to a given high-resolution (HR) image. However, despite the basic training scheme being the predominant choice, its use in the context of ill-posed inverse problems has not been thoroughly investigated. In this work, we aim to provide a better comprehension of the underlying constituent by decomposing target HR images into two subcomponents: (1) the optimal centroid which is the expectation over multiple potential HR images, and (2) the inherent noise defined as the residual between the HR image and the centroid. Our findings show that the current training scheme cannot capture the ill-posed nature of SISR and becomes vulnerable to the inherent noise term, especially during early training steps. To tackle this issue, we propose a novel optimization method that can effectively remove the inherent noise term in the early steps of vanilla training by estimating the optimal centroid and directly optimizing toward the estimation. Experimental results show that the proposed method can effectively enhance the stability of vanilla training, leading to overall performance gain. Codes are available at github.com/2minkyulee/ECO.