Abstract:Power transforms are popular parametric techniques for making data more Gaussian-like, and are widely used as preprocessing steps in statistical analysis and machine learning. However, we find that direct implementations of power transforms suffer from severe numerical instabilities, which can lead to incorrect results or even crashes. In this paper, we provide a comprehensive analysis of the sources of these instabilities and propose effective remedies. We further extend power transforms to the federated learning setting, addressing both numerical and distributional challenges that arise in this context. Experiments on real-world datasets demonstrate that our methods are both effective and robust, substantially improving stability compared to existing approaches.
Abstract:Receiver Operating Characteristic (ROC) and Precision-Recall (PR) curves are fundamental tools for evaluating machine learning classifiers, offering detailed insights into the trade-offs between true positive rate vs. false positive rate (ROC) or precision vs. recall (PR). However, in Federated Learning (FL) scenarios, where data is distributed across multiple clients, computing these curves is challenging due to privacy and communication constraints. Specifically, the server cannot access raw prediction scores and class labels, which are used to compute the ROC and PR curves in a centralized setting. In this paper, we propose a novel method for approximating ROC and PR curves in a federated setting by estimating quantiles of the prediction score distribution under distributed differential privacy. We provide theoretical bounds on the Area Error (AE) between the true and estimated curves, demonstrating the trade-offs between approximation accuracy, privacy, and communication cost. Empirical results on real-world datasets demonstrate that our method achieves high approximation accuracy with minimal communication and strong privacy guarantees, making it practical for privacy-preserving model evaluation in federated systems.
Abstract:Calibrating machine learning models so that predicted probabilities better reflect the true outcome frequencies is crucial for reliable decision-making across many applications. In Federated Learning (FL), the goal is to train a global model on data which is distributed across multiple clients and cannot be centralized due to privacy concerns. FL is applied in key areas such as healthcare and finance where calibration is strongly required, yet federated private calibration has been largely overlooked. This work introduces the integration of post-hoc model calibration techniques within FL. Specifically, we transfer traditional centralized calibration methods such as histogram binning and temperature scaling into federated environments and define new methods to operate them under strong client heterogeneity. We study (1) a federated setting and (2) a user-level Differential Privacy (DP) setting and demonstrate how both federation and DP impacts calibration accuracy. We propose strategies to mitigate degradation commonly observed under heterogeneity and our findings highlight that our federated temperature scaling works best for DP-FL whereas our weighted binning approach is best when DP is not required.
Abstract:Synthetic data is often positioned as a solution to replace sensitive fixed-size datasets with a source of unlimited matching data, freed from privacy concerns. There has been much progress in synthetic data generation over the last decade, leveraging corresponding advances in machine learning and data analytics. In this survey, we cover the key developments and the main concepts in tabular synthetic data generation, including paradigms based on probabilistic graphical models and on deep learning. We provide background and motivation, before giving a technical deep-dive into the methodologies. We also address the limitations of synthetic data, by studying attacks that seek to retrieve information about the original sensitive data. Finally, we present extensions and open problems in this area.



Abstract:Differentially Private Synthetic Data Generation (DP-SDG) is a key enabler of private and secure tabular-data sharing, producing artificial data that carries through the underlying statistical properties of the input data. This typically involves adding carefully calibrated statistical noise to guarantee individual privacy, at the cost of synthetic data quality. Recent literature has explored scenarios where a small amount of public data is used to help enhance the quality of synthetic data. These methods study a horizontal public-private partitioning which assumes access to a small number of public rows that can be used for model initialization, providing a small utility gain. However, realistic datasets often naturally consist of public and private attributes, making a vertical public-private partitioning relevant for practical synthetic data deployments. We propose a novel framework that adapts horizontal public-assisted methods into the vertical setting. We compare this framework against our alternative approach that uses conditional generation, highlighting initial limitations of public-data assisted methods and proposing future research directions to address these challenges.




Abstract:Cross-device Federated Analytics (FA) is a distributed computation paradigm designed to answer analytics queries about and derive insights from data held locally on users' devices. On-device computations combined with other privacy and security measures ensure that only minimal data is transmitted off-device, achieving a high standard of data protection. Despite FA's broad relevance, the applicability of existing FA systems is limited by compromised accuracy; lack of flexibility for data analytics; and an inability to scale effectively. In this paper, we describe our approach to combine privacy, scalability, and practicality to build and deploy a system that overcomes these limitations. Our FA system leverages trusted execution environments (TEEs) and optimizes the use of on-device computing resources to facilitate federated data processing across large fleets of devices, while ensuring robust, defensible, and verifiable privacy safeguards. We focus on federated analytics (statistics and monitoring), in contrast to systems for federated learning (ML workloads), and we flag the key differences.




Abstract:A key task in managing distributed, sensitive data is to measure the extent to which a distribution changes. Understanding this drift can effectively support a variety of federated learning and analytics tasks. However, in many practical settings sharing such information can be undesirable (e.g., for privacy concerns) or infeasible (e.g., for high communication costs). In this work, we describe novel algorithmic approaches for estimating the KL divergence of data across federated models of computation, under differential privacy. We analyze their theoretical properties and present an empirical study of their performance. We explore parameter settings that optimize the accuracy of the algorithm catering to each of the settings; these provide sub-variations that are applicable to real-world tasks, addressing different context- and application-specific trust level requirements. Our experimental results confirm that our private estimators achieve accuracy comparable to a baseline algorithm without differential privacy guarantees.




Abstract:Statistical heterogeneity is a measure of how skewed the samples of a dataset are. It is a common problem in the study of differential privacy that the usage of a statistically heterogeneous dataset results in a significant loss of accuracy. In federated scenarios, statistical heterogeneity is more likely to happen, and so the above problem is even more pressing. We explore the three most promising ways to measure statistical heterogeneity and give formulae for their accuracy, while simultaneously incorporating differential privacy. We find the optimum privacy parameters via an analytic mechanism, which incorporates root finding methods. We validate the main theorems and related hypotheses experimentally, and test the robustness of the analytic mechanism to different heterogeneity levels. The analytic mechanism in a distributed setting delivers superior accuracy to all combinations involving the classic mechanism and/or the centralized setting. All measures of statistical heterogeneity do not lose significant accuracy when a heterogeneous sample is used.




Abstract:Preserving individual privacy while enabling collaborative data sharing is crucial for organizations. Synthetic data generation is one solution, producing artificial data that mirrors the statistical properties of private data. While numerous techniques have been devised under differential privacy, they predominantly assume data is centralized. However, data is often distributed across multiple clients in a federated manner. In this work, we initiate the study of federated synthetic tabular data generation. Building upon a SOTA central method known as AIM, we present DistAIM and FLAIM. We show it is straightforward to distribute AIM, extending a recent approach based on secure multi-party computation which necessitates additional overhead, making it less suited to federated scenarios. We then demonstrate that naively federating AIM can lead to substantial degradation in utility under the presence of heterogeneity. To mitigate both issues, we propose an augmented FLAIM approach that maintains a private proxy of heterogeneity. We simulate our methods across a range of benchmark datasets under different degrees of heterogeneity and show this can improve utility while reducing overhead.
Abstract:Neural network pruning is frequently used to compress over-parameterized networks by large amounts, while incurring only marginal drops in generalization performance. However, the impact of pruning on networks that have been highly optimized for efficient inference has not received the same level of attention. In this paper, we analyze the effect of pruning for computer vision, and study state-of-the-art ConvNets, such as the FBNetV3 family of models. We show that model pruning approaches can be used to further optimize networks trained through NAS (Neural Architecture Search). The resulting family of pruned models can consistently obtain better performance than existing FBNetV3 models at the same level of computation, and thus provide state-of-the-art results when trading off between computational complexity and generalization performance on the ImageNet benchmark. In addition to better generalization performance, we also demonstrate that when limited computation resources are available, pruning FBNetV3 models incur only a fraction of GPU-hours involved in running a full-scale NAS.