Unsupervised semantic segmentation is the process of segmenting images into meaningful regions without using labeled data.
Semantic segmentation networks, which are essential for robotic perception, often suffer from performance degradation when the visual distribution of the deployment environment differs from that of the source dataset on which they were trained. Unsupervised Domain Adaptation (UDA) addresses this challenge by adapting the network to the robot's target environment without external supervision, leveraging the large amounts of data a robot might naturally collect during long-term operation. In such settings, UDA methods can exploit multi-view consistency across the environment's map to fine-tune the model in an unsupervised fashion and mitigate domain shift. However, these approaches remain sensitive to cross-view instance-level inconsistencies. In this work, we propose a method that starts from a volumetric 3D map to generate multi-view consistent pseudo-labels. We then refine these labels using the zero-shot instance segmentation capabilities of a foundation model, enforcing instance-level coherence. The refined annotations serve as supervision for self-supervised fine-tuning, enabling the robot to adapt its perception system at deployment time. Experiments on real-world data demonstrate that our approach consistently improves performance over state-of-the-art UDA baselines based on multi-view consistency, without requiring any ground-truth labels in the target domain.
We argue that existing training-free segmentation methods rely on an implicit and limiting assumption, that segmentation is a spectral graph partitioning problem over diffusion-derived affinities. Such approaches, based on global graph partitioning and eigenvector-based formulations of affinity matrices, suffer from several fundamental drawbacks, they require pre-selecting the number of clusters, induce boundary oversmoothing due to spectral relaxation, and remain highly sensitive to noisy or multi-modal affinity distributions. Moreover, many prior works neglect the importance of local neighborhood structure, which plays a crucial role in stabilizing affinity propagation and preserving fine-grained contours. To address these limitations, we reformulate training-free segmentation as a stochastic flow equilibrium problem over diffusion-induced affinity graphs, where segmentation emerges from a stochastic propagation process that integrates global diffusion attention with local neighborhoods extracted from stable diffusion, yielding a sparse yet expressive affinity structure. Building on this formulation, we introduce a Markov propagation scheme that performs random-walk-based label diffusion with an adaptive pruning strategy that suppresses unreliable transitions while reinforcing confident affinity paths. Experiments across seven widely used semantic segmentation benchmarks demonstrate that our method achieves state-of-the-art zero-shot performance, producing sharper boundaries, more coherent regions, and significantly more stable masks compared to prior spectral-clustering-based approaches.
We consider the problem of unsupervised skill segmentation and hierarchical structure discovery in reinforcement learning. While recent approaches have sought to segment trajectories into reusable skills or options, most rely on action labels, rewards, or handcrafted annotations, limiting their applicability. We propose a method that segments unlabelled trajectories into skills and induces a hierarchical structure over them using a grammar-based approach. The resulting hierarchy captures both low-level behaviours and their composition into higher-level skills. We evaluate our approach in high-dimensional, pixel-based environments, including Craftax and the full, unmodified version of Minecraft. Using metrics for skill segmentation, reuse, and hierarchy quality, we find that our method consistently produces more structured and semantically meaningful hierarchies than existing baselines. Furthermore, as a proof of concept for utility, we demonstrate that these discovered hierarchies accelerate and stabilise learning on downstream reinforcement learning tasks.
Improper exposure often leads to severe loss of details, color distortion, and reduced contrast. Exposure correction still faces two critical challenges: (1) the ignorance of object-wise regional semantic information causes the color shift artifacts; (2) real-world exposure images generally have no ground-truth labels, and its labeling entails massive manual editing. To tackle the challenges, we propose a new unsupervised semantic-aware exposure correction network. It contains an adaptive semantic-aware fusion module, which effectively fuses the semantic information extracted from a pre-trained Fast Segment Anything Model into a shared image feature space. Then the fused features are used by our multi-scale residual spatial mamba group to restore the details and adjust the exposure. To avoid manual editing, we propose a pseudo-ground truth generator guided by CLIP, which is fine-tuned to automatically identify exposure situations and instruct the tailored corrections. Also, we leverage the rich priors from the FastSAM and CLIP to develop a semantic-prompt consistency loss to enforce semantic consistency and image-prompt alignment for unsupervised training. Comprehensive experimental results illustrate the effectiveness of our method in correcting real-world exposure images and outperforms state-of-the-art unsupervised methods both numerically and visually.
DepthCropSeg++: a foundation model for crop segmentation, capable of segmenting different crop species under open in-field environment. Crop segmentation is a fundamental task for modern agriculture, which closely relates to many downstream tasks such as plant phenotyping, density estimation, and weed control. In the era of foundation models, a number of generic large language and vision models have been developed. These models have demonstrated remarkable real world generalization due to significant model capacity and largescale datasets. However, current crop segmentation models mostly learn from limited data due to expensive pixel-level labelling cost, often performing well only under specific crop types or controlled environment. In this work, we follow the vein of our previous work DepthCropSeg, an almost unsupervised approach to crop segmentation, to scale up a cross-species and crossscene crop segmentation dataset, with 28,406 images across 30+ species and 15 environmental conditions. We also build upon a state-of-the-art semantic segmentation architecture ViT-Adapter architecture, enhance it with dynamic upsampling for improved detail awareness, and train the model with a two-stage selftraining pipeline. To systematically validate model performance, we conduct comprehensive experiments to justify the effectiveness and generalization capabilities across multiple crop datasets. Results demonstrate that DepthCropSeg++ achieves 93.11% mIoU on a comprehensive testing set, outperforming both supervised baselines and general-purpose vision foundation models like Segmentation Anything Model (SAM) by significant margins (+0.36% and +48.57% respectively). The model particularly excels in challenging scenarios including night-time environment (86.90% mIoU), high-density canopies (90.09% mIoU), and unseen crop varieties (90.09% mIoU), indicating a new state of the art for crop segmentation.
Few-shot semantic segmentation of time-series remote sensing images remains a critical challenge, particularly in regions where labeled data is scarce or costly to obtain. While state-of-the-art models perform well under full supervision, their performance degrades significantly under limited labeling, limiting their real-world applicability. In this work, we propose SAM-Aug, a new annotation-efficient framework that leverages the geometry-aware segmentation capability of the Segment Anything Model (SAM) to improve few-shot land cover mapping. Our approach constructs cloud-free composite images from temporal sequences and applies SAM in a fully unsupervised manner to generate geometry-aware mask priors. These priors are then integrated into training through a proposed loss function called RegionSmoothLoss, which enforces prediction consistency within each SAM-derived region across temporal frames, effectively regularizing the model to respect semantically coherent structures. Extensive experiments on the PASTIS-R benchmark under a 5 percent labeled setting demonstrate the effectiveness and robustness of SAM-Aug. Averaged over three random seeds (42, 2025, 4090), our method achieves a mean test mIoU of 36.21 percent, outperforming the state-of-the-art baseline by +2.33 percentage points, a relative improvement of 6.89 percent. Notably, on the most favorable split (seed=42), SAM-Aug reaches a test mIoU of 40.28 percent, representing an 11.2 percent relative gain with no additional labeled data. The consistent improvement across all seeds confirms the generalization power of leveraging foundation model priors under annotation scarcity. Our results highlight that vision models like SAM can serve as useful regularizers in few-shot remote sensing learning, offering a scalable and plug-and-play solution for land cover monitoring without requiring manual annotations or model fine-tuning.
Semantic segmentation of 3D geospatial point clouds is pivotal for remote sensing applications. However, variations in geographic patterns across regions and data acquisition strategies induce significant domain shifts, severely degrading the performance of deployed models. Existing domain adaptation methods typically rely on access to source-domain data. However, this requirement is rarely met due to data privacy concerns, regulatory policies, and data transmission limitations. This motivates the largely underexplored setting of source-free unsupervised domain adaptation (SFUDA), where only a pretrained model and unlabeled target-domain data are available. In this paper, we propose LoGo (Local-Global Dual-Consensus), a novel SFUDA framework specifically designed for geospatial point clouds. At the local level, we introduce a class-balanced prototype estimation module that abandons conventional global threshold filtering in favor of an intra-class independent anchor mining strategy. This ensures that robust feature prototypes can be generated even for sample-scarce tail classes, effectively mitigating the feature collapse caused by long-tailed distributions. At the global level, we introduce an optimal transport-based global distribution alignment module that formulates pseudo-label assignment as a global optimization problem. By enforcing global distribution constraints, this module effectively corrects the over-dominance of head classes inherent in local greedy assignments, preventing model predictions from being severely biased towards majority classes. Finally, we propose a dual-consistency pseudo-label filtering mechanism. This strategy retains only high-confidence pseudo-labels where local multi-augmented ensemble predictions align with global optimal transport assignments for self-training.
Semi-supervised medical image segmentation is an effective method for addressing scenarios with limited labeled data. Existing methods mainly rely on frameworks such as mean teacher and dual-stream consistency learning. These approaches often face issues like error accumulation and model structural complexity, while also neglecting the interaction between labeled and unlabeled data streams. To overcome these challenges, we propose a Bidirectional Channel-selective Semantic Interaction~(BCSI) framework for semi-supervised medical image segmentation. First, we propose a Semantic-Spatial Perturbation~(SSP) mechanism, which disturbs the data using two strong augmentation operations and leverages unsupervised learning with pseudo-labels from weak augmentations. Additionally, we employ consistency on the predictions from the two strong augmentations to further improve model stability and robustness. Second, to reduce noise during the interaction between labeled and unlabeled data, we propose a Channel-selective Router~(CR) component, which dynamically selects the most relevant channels for information exchange. This mechanism ensures that only highly relevant features are activated, minimizing unnecessary interference. Finally, the Bidirectional Channel-wise Interaction~(BCI) strategy is employed to supplement additional semantic information and enhance the representation of important channels. Experimental results on multiple benchmarking 3D medical datasets demonstrate that the proposed method outperforms existing semi-supervised approaches.
Segmentation of the left atrial (LA) wall and endocardium from late gadolinium-enhanced (LGE) MRI is essential for quantifying atrial fibrosis in patients with atrial fibrillation. The development of accurate machine learning-based segmentation models remains challenging due to the limited availability of data and the complexity of anatomical structures. In this work, we investigate 3D conditional generative models as potential solution for augmenting scarce LGE training data and improving LA segmentation performance. We develop a pipeline to synthesize high-fidelity 3D LGE MRI volumes from composite semantic label maps combining anatomical expert annotations with unsupervised tissue clusters, using three 3D conditional generators (Pix2Pix GAN, SPADE-GAN, and SPADE-LDM). The synthetic images are evaluated for realism and their impact on downstream LA segmentation. SPADE-LDM generates the most realistic and structurally accurate images, achieving an FID of 4.063 and surpassing GAN models, which have FIDs of 40.821 and 7.652 for Pix2Pix and SPADE-GAN, respectively. When augmented with synthetic LGE images, the Dice score for LA cavity segmentation with a 3D U-Net model improved from 0.908 to 0.936, showing a statistically significant improvement (p < 0.05) over the baseline.These findings demonstrate the potential of label-conditioned 3D synthesis to enhance the segmentation of under-represented cardiac structures.
Unlabeled LiDAR logs, in autonomous driving applications, are inherently a gold mine of dense 3D geometry hiding in plain sight - yet they are almost useless without human labels, highlighting a dominant cost barrier for autonomous-perception research. In this work we tackle this bottleneck by leveraging temporal-geometric consistency across LiDAR sweeps to lift and fuse cues from text and 2D vision foundation models directly into 3D, without any manual input. We introduce an unsupervised multi-modal pseudo-labeling method relying on strong geometric priors learned from temporally accumulated LiDAR maps, alongside with a novel iterative update rule that enforces joint geometric-semantic consistency, and vice-versa detecting moving objects from inconsistencies. Our method simultaneously produces 3D semantic labels, 3D bounding boxes, and dense LiDAR scans, demonstrating robust generalization across three datasets. We experimentally validate that our method compares favorably to existing semantic segmentation and object detection pseudo-labeling methods, which often require additional manual supervision. We confirm that even a small fraction of our geometrically consistent, densified LiDAR improves depth prediction by 51.5% and 22.0% MAE in the 80-150 and 150-250 meters range, respectively.