Point-cloud generation is the process of generating 3D point clouds from images or depth maps.
We introduce AffordanceGrasp-R1, a reasoning-driven affordance segmentation framework for robotic grasping that combines a chain-of-thought (CoT) cold-start strategy with reinforcement learning to enhance deduction and spatial grounding. In addition, we redesign the grasping pipeline to be more context-aware by generating grasp candidates from the global scene point cloud and subsequently filtering them using instruction-conditioned affordance masks. Extensive experiments demonstrate that AffordanceGrasp-R1 consistently outperforms state-of-the-art (SOTA) methods on benchmark datasets, and real-world robotic grasping evaluations further validate its robustness and generalization under complex language-conditioned manipulation scenarios.
Reconstructing 3D scenes from sparse images remains a challenging task due to the difficulty of recovering accurate geometry and texture without optimization. Recent approaches leverage generalizable models to generate 3D scenes using 3D Gaussian Splatting (3DGS) primitive. However, they often fail to produce continuous surfaces and instead yield discrete, color-biased point clouds that appear plausible at normal resolution but reveal severe artifacts under close-up views. To address this issue, we present SurfSplat, a feedforward framework based on 2D Gaussian Splatting (2DGS) primitive, which provides stronger anisotropy and higher geometric precision. By incorporating a surface continuity prior and a forced alpha blending strategy, SurfSplat reconstructs coherent geometry together with faithful textures. Furthermore, we introduce High-Resolution Rendering Consistency (HRRC), a new evaluation metric designed to evaluate high-resolution reconstruction quality. Extensive experiments on RealEstate10K, DL3DV, and ScanNet demonstrate that SurfSplat consistently outperforms prior methods on both standard metrics and HRRC, establishing a robust solution for high-fidelity 3D reconstruction from sparse inputs. Project page: https://hebing-sjtu.github.io/SurfSplat-website/
Real-time multi-view point cloud reconstruction is a core problem in 3D vision and immersive perception, with wide applications in VR, AR, robotic navigation, digital twins, and computer interaction. Despite advances in multi-camera systems and high-resolution depth sensors, fusing large-scale multi-view depth observations into high-quality point clouds under strict real-time constraints remains challenging. Existing methods relying on voxel-based fusion, temporal accumulation, or global optimization suffer from high computational complexity, excessive memory usage, and limited scalability, failing to simultaneously achieve real-time performance, reconstruction quality, and multi-camera extensibility. We propose FUSE-Flow, a frame-wise, stateless, and linearly scalable point cloud streaming reconstruction framework. Each frame independently generates point cloud fragments, fused via two weights, measurement confidence and 3D distance consistency to suppress noise while preserving geometric details. For large-scale multi-camera efficiency, we introduce an adaptive spatial hashing-based weighted aggregation method: 3D space is adaptively partitioned by local point cloud density, representative points are selected per cell, and weighted fusion is performed to handle both sparse and dense regions. With GPU parallelization, FUSE-Flow achieves high-throughput, low-latency point cloud generation and fusion with linear complexity. Experiments demonstrate that the framework improves reconstruction stability and geometric fidelity in overlapping, depth-discontinuous, and dynamic scenes, while maintaining real-time frame rates on modern GPUs, verifying its effectiveness, robustness, and scalability.
The reliable detection of unauthorized individuals in safety-critical industrial indoor spaces is crucial to avoid plant shutdowns, property damage, and personal hazards. Conventional vision-based methods that use deep-learning approaches for person recognition provide image information but are sensitive to lighting and visibility conditions and often violate privacy regulations, such as the General Data Protection Regulation (GDPR) in the European Union. Typically, detection systems based on deep learning require annotated data for training. Collecting and annotating such data, however, is highly time-consuming and due to manual treatments not necessarily error free. Therefore, this paper presents a privacy-compliant approach based on Micro-Electro-Mechanical Systems LiDAR (MEMS-LiDAR), which exclusively captures anonymized 3D point clouds and avoids personal identification features. To compensate for the large amount of time required to record real LiDAR data and for post-processing and annotation, real recordings are augmented with synthetically generated scenes from the CARLA simulation framework. The results demonstrate that the hybrid data improves the average precision by 44 percentage points compared to a model trained exclusively with real data while reducing the manual annotation effort by 50 %. Thus, the proposed approach provides a scalable, cost-efficient alternative to purely real-data-based methods and systematically shows how synthetic LiDAR data can combine high performance in person detection with GDPR compliance in an industrial environment.
We introduce the Quartet of Diffusions, a structure-aware point cloud generation framework that explicitly models part composition and symmetry. Unlike prior methods that treat shape generation as a holistic process or only support part composition, our approach leverages four coordinated diffusion models to learn distributions of global shape latents, symmetries, semantic parts, and their spatial assembly. This structured pipeline ensures guaranteed symmetry, coherent part placement, and diverse, high-quality outputs. By disentangling the generative process into interpretable components, our method supports fine-grained control over shape attributes, enabling targeted manipulation of individual parts while preserving global consistency. A central global latent further reinforces structural coherence across assembled parts. Our experiments show that the Quartet achieves state-of-the-art performance. To our best knowledge, this is the first 3D point cloud generation framework that fully integrates and enforces both symmetry and part priors throughout the generative process.
Generating realistic 3D scenes from text is crucial for immersive applications like VR, AR, and gaming. While text-driven approaches promise efficiency, existing methods suffer from limited 3D-text data and inconsistent multi-view stitching, resulting in overly simplistic scenes. To address this, we propose PSGS, a two-stage framework for high-fidelity panoramic scene generation. First, a novel two-layer optimization architecture generates semantically coherent panoramas: a layout reasoning layer parses text into structured spatial relationships, while a self-optimization layer refines visual details via iterative MLLM feedback. Second, our panorama sliding mechanism initializes globally consistent 3D Gaussian Splatting point clouds by strategically sampling overlapping perspectives. By incorporating depth and semantic coherence losses during training, we greatly improve the quality and detail fidelity of rendered scenes. Our experiments demonstrate that PSGS outperforms existing methods in panorama generation and produces more appealing 3D scenes, offering a robust solution for scalable immersive content creation.
Accurate sensor-to-vehicle calibration is essential for safe autonomous driving. Angular misalignments of LiDAR sensors can lead to safety-critical issues during autonomous operation. However, current methods primarily focus on correcting sensor-to-sensor errors without considering the miscalibration of individual sensors that cause these errors in the first place. We introduce FlowCalib, the first framework that detects LiDAR-to-vehicle miscalibration using motion cues from the scene flow of static objects. Our approach leverages the systematic bias induced by rotational misalignment in the flow field generated from sequential 3D point clouds, eliminating the need for additional sensors. The architecture integrates a neural scene flow prior for flow estimation and incorporates a dual-branch detection network that fuses learned global flow features with handcrafted geometric descriptors. These combined representations allow the system to perform two complementary binary classification tasks: a global binary decision indicating whether misalignment is present and separate, axis-specific binary decisions indicating whether each rotational axis is misaligned. Experiments on the nuScenes dataset demonstrate FlowCalib's ability to robustly detect miscalibration, establishing a benchmark for sensor-to-vehicle miscalibration detection.
High-resolution (5MP+) stereo vision systems are essential for advancing robotic capabilities, enabling operation over longer ranges and generating significantly denser and accurate 3D point clouds. However, realizing the full potential of high-angular-resolution sensors requires a commensurately higher level of calibration accuracy and faster processing -- requirements often unmet by conventional methods. This study addresses that critical gap by processing 5MP camera imagery using a novel, advanced frame-to-frame calibration and stereo matching methodology designed to achieve both high accuracy and speed. Furthermore, we introduce a new approach to evaluate real-time performance by comparing real-time disparity maps with ground-truth disparity maps derived from more computationally intensive stereo matching algorithms. Crucially, the research demonstrates that high-pixel-count cameras yield high-quality point clouds only through the implementation of high-accuracy calibration.
3-D object detection based on 4-D radar-vision is an important part in Internet of Vehicles (IoV). However, there are two challenges which need to be faced. First, the 4-D radar point clouds are sparse, leading to poor 3-D representation. Second, vision datas exhibit representation degradation under low-light, long distance detection and dense occlusion scenes, which provides unreliable texture information during fusion stage. To address these issues, a framework named SDCM is proposed, which contains Simulated Densifying and Compensatory Modeling Fusion for radar-vision 3-D object detection in IoV. Firstly, considering point generation based on Gaussian simulation of key points obtained from 3-D Kernel Density Estimation (3-D KDE), and outline generation based on curvature simulation, Simulated Densifying (SimDen) module is designed to generate dense radar point clouds. Secondly, considering that radar data could provide more real time information than vision data, due to the all-weather property of 4-D radar. Radar Compensatory Mapping (RCM) module is designed to reduce the affects of vision datas' representation degradation. Thirdly, considering that feature tensor difference values contain the effective information of every modality, which could be extracted and modeled for heterogeneity reduction and modalities interaction, Mamba Modeling Interactive Fusion (MMIF) module is designed for reducing heterogeneous and achieving interactive Fusion. Experiment results on the VoD, TJ4DRadSet and Astyx HiRes 2019 dataset show that SDCM achieves best performance with lower parameter quantity and faster inference speed. Our code will be available.
The growing adoption of robotics and augmented reality in real-world applications has driven considerable research interest in 3D object detection based on point clouds. While previous methods address unified training across multiple datasets, they fail to model geometric relationships in sparse point cloud scenes and ignore the feature distribution in significant areas, which ultimately restricts their performance. To deal with this issue, a unified 3D indoor detection framework, called UniGeo, is proposed. To model geometric relations in scenes, we first propose a geometry-aware learning module that establishes a learnable mapping from spatial relationships to feature weights, which enabes explicit geometric feature enhancement. Then, to further enhance point cloud feature representation, we propose a dynamic channel gating mechanism that leverages learnable channel-wise weighting. This mechanism adaptively optimizes features generated by the sparse 3D U-Net network, significantly enhancing key geometric information. Extensive experiments on six different indoor scene datasets clearly validate the superior performance of our method.