Abstract:LiDAR place recognition (LPR) plays a vital role in autonomous navigation. However, existing LPR methods struggle to maintain robustness under adverse weather conditions such as rain, snow, and fog, where weather-induced noise and point cloud degradation impair LiDAR reliability and perception accuracy. To tackle these challenges, we propose an Iterative Task-Driven Framework (ITDNet), which integrates a LiDAR Data Restoration (LDR) module and a LiDAR Place Recognition (LPR) module through an iterative learning strategy. These modules are jointly trained end-to-end, with alternating optimization to enhance performance. The core rationale of ITDNet is to leverage the LDR module to recover the corrupted point clouds while preserving structural consistency with clean data, thereby improving LPR accuracy in adverse weather. Simultaneously, the LPR task provides feature pseudo-labels to guide the LDR module's training, aligning it more effectively with the LPR task. To achieve this, we first design a task-driven LPR loss and a reconstruction loss to jointly supervise the optimization of the LDR module. Furthermore, for the LDR module, we propose a Dual-Domain Mixer (DDM) block for frequency-spatial feature fusion and a Semantic-Aware Generator (SAG) block for semantic-guided restoration. In addition, for the LPR module, we introduce a Multi-Frequency Transformer (MFT) block and a Wavelet Pyramid NetVLAD (WPN) block to aggregate multi-scale, robust global descriptors. Finally, extensive experiments on the Weather-KITTI, Boreas, and our proposed Weather-Apollo datasets demonstrate that, demonstrate that ITDNet outperforms existing LPR methods, achieving state-of-the-art performance in adverse weather. The datasets and code will be made publicly available at https://github.com/Grandzxw/ITDNet.
Abstract:LiDAR sensors are crucial for providing high-resolution 3D point cloud data in autonomous driving systems, enabling precise environmental perception. However, real-world adverse weather conditions, such as rain, fog, and snow, introduce significant noise and interference, degrading the reliability of LiDAR data and the performance of downstream tasks like semantic segmentation. Existing datasets often suffer from limited weather diversity and small dataset sizes, which restrict their effectiveness in training models. Additionally, current deep learning denoising methods, while effective in certain scenarios, often lack interpretability, complicating the ability to understand and validate their decision-making processes. To overcome these limitations, we introduce two large-scale datasets, Weather-KITTI and Weather-NuScenes, which cover three common adverse weather conditions: rain, fog, and snow. These datasets retain the original LiDAR acquisition information and provide point-level semantic labels for rain, fog, and snow. Furthermore, we propose a novel point cloud denoising model, TripleMixer, comprising three mixer layers: the Geometry Mixer Layer, the Frequency Mixer Layer, and the Channel Mixer Layer. These layers are designed to capture geometric spatial information, extract multi-scale frequency information, and enhance the multi-channel feature information of point clouds, respectively. Experiments conducted on the WADS dataset in real-world scenarios, as well as on our proposed Weather-KITTI and Weather-NuScenes datasets, demonstrate that our model achieves state-of-the-art denoising performance. Additionally, our experiments show that integrating the denoising model into existing segmentation frameworks enhances the performance of downstream tasks.The datasets and code will be made publicly available at https://github.com/Grandzxw/TripleMixer.