Abstract:We introduce a novel representation for learning and generating Computer-Aided Design (CAD) models in the form of $\textit{boundary representations}$ (B-Reps). Our representation unifies the continuous geometric properties of B-Rep primitives in different orders (e.g., surfaces and curves) and their discrete topological relations in a $\textit{holistic latent}$ (HoLa) space. This is based on the simple observation that the topological connection between two surfaces is intrinsically tied to the geometry of their intersecting curve. Such a prior allows us to reformulate topology learning in B-Reps as a geometric reconstruction problem in Euclidean space. Specifically, we eliminate the presence of curves, vertices, and all the topological connections in the latent space by learning to distinguish and derive curve geometries from a pair of surface primitives via a neural intersection network. To this end, our holistic latent space is only defined on surfaces but encodes a full B-Rep model, including the geometry of surfaces, curves, vertices, and their topological relations. Our compact and holistic latent space facilitates the design of a first diffusion-based generator to take on a large variety of inputs including point clouds, single/multi-view images, 2D sketches, and text prompts. Our method significantly reduces ambiguities, redundancies, and incoherences among the generated B-Rep primitives, as well as training complexities inherent in prior multi-step B-Rep learning pipelines, while achieving greatly improved validity rate over current state of the art: 82% vs. $\approx$50%.
Abstract:This paper presents a novel neural network architecture for the purpose of pervasive visualisation of a 3D human upper limb musculoskeletal system model. Bringing simulation capabilities to resource-poor systems like mobile devices is of growing interest across many research fields, to widen applicability of methods and results. Until recently, this goal was thought to be out of reach for realistic continuum-mechanical simulations of musculoskeletal systems, due to prohibitive computational cost. Within this work we use a sparse grid surrogate to capture the surface deformation of the m.~biceps brachii in order to train a deep learning model, used for real-time visualisation of the same muscle. Both these surrogate models take 5 muscle activation levels as input and output Cartesian coordinate vectors for each mesh node on the muscle's surface. Thus, the neural network architecture features a significantly lower input than output dimension. 5 muscle activation levels were sufficient to achieve an average error of 0.97 +/- 0.16 mm, or 0.57 +/- 0.10 % for the 2809 mesh node positions of the biceps. The model achieved evaluation times of 9.88 ms per predicted deformation state on CPU only and 3.48 ms with GPU-support, leading to theoretical frame rates of 101 fps and 287 fps respectively. Deep learning surrogates thus provide a way to make continuum-mechanical simulations accessible for visual real-time applications.