Abstract:This paper presents a novel neural network architecture for the purpose of pervasive visualisation of a 3D human upper limb musculoskeletal system model. Bringing simulation capabilities to resource-poor systems like mobile devices is of growing interest across many research fields, to widen applicability of methods and results. Until recently, this goal was thought to be out of reach for realistic continuum-mechanical simulations of musculoskeletal systems, due to prohibitive computational cost. Within this work we use a sparse grid surrogate to capture the surface deformation of the m.~biceps brachii in order to train a deep learning model, used for real-time visualisation of the same muscle. Both these surrogate models take 5 muscle activation levels as input and output Cartesian coordinate vectors for each mesh node on the muscle's surface. Thus, the neural network architecture features a significantly lower input than output dimension. 5 muscle activation levels were sufficient to achieve an average error of 0.97 +/- 0.16 mm, or 0.57 +/- 0.10 % for the 2809 mesh node positions of the biceps. The model achieved evaluation times of 9.88 ms per predicted deformation state on CPU only and 3.48 ms with GPU-support, leading to theoretical frame rates of 101 fps and 287 fps respectively. Deep learning surrogates thus provide a way to make continuum-mechanical simulations accessible for visual real-time applications.
Abstract:In recent decades, the main focus of computer modeling has been on supporting the design and development of engineering prototyes, but it is now ubiquitous in non-traditional areas such as medical rehabilitation. Conventional modeling approaches like the finite element~(FE) method are computationally costly when dealing with complex models, making them of limited use for purposes like real-time simulation or deployment on low-end hardware, if the model at hand cannot be simplified in a useful manner. Consequently, non-traditional approaches such as surrogate modeling using data-driven model order reduction are used to make complex high-fidelity models more widely available anyway. They often involve a dimensionality reduction step, in which the high-dimensional system state is transformed onto a low-dimensional subspace or manifold, and a regression approach to capture the reduced system behavior. While most publications focus on one dimensionality reduction, such as principal component analysis~(PCA) (linear) or autoencoder (nonlinear), we consider and compare PCA, kernel PCA, autoencoders, as well as variational autoencoders for the approximation of a structural dynamical system. In detail, we demonstrate the benefits of the surrogate modeling approach on a complex FE model of a human upper-arm. We consider both the models deformation and the internal stress as the two main quantities of interest in a FE context. By doing so we are able to create a computationally low cost surrogate model which captures the system behavior with high approximation quality and fast evaluations.