Topic:Dialogue State Tracking
What is Dialogue State Tracking? Dialogue state tracking consists of determining at each turn of a dialogue the full representation of what the user wants at that point in the dialogue, which contains a goal constraint, a set of requested slots, and the user's dialogue act.
Papers and Code
Oct 31, 2024
Abstract:Zero-shot domain adaptation for dialogue state tracking (DST) remains a challenging problem in task-oriented dialogue (TOD) systems, where models must generalize to target domains unseen at training time. Current large language model approaches for zero-shot domain adaptation rely on prompting to introduce knowledge pertaining to the target domains. However, their efficacy strongly depends on prompt engineering, as well as the zero-shot ability of the underlying language model. In this work, we devise a novel data augmentation approach, Schema Augmentation, that improves the zero-shot domain adaptation of language models through fine-tuning. Schema Augmentation is a simple but effective technique that enhances generalization by introducing variations of slot names within the schema provided in the prompt. Experiments on MultiWOZ and SpokenWOZ showed that the proposed approach resulted in a substantial improvement over the baseline, in some experiments achieving over a twofold accuracy gain over unseen domains while maintaining equal or superior performance over all domains.
Via
Oct 30, 2024
Abstract:Goal-oriented chatbots are essential for automating user tasks, such as booking flights or making restaurant reservations. A key component of these systems is Dialogue State Tracking (DST), which interprets user intent and maintains the dialogue state. However, existing DST methods often rely on fixed ontologies and manually compiled slot values, limiting their adaptability to open-domain dialogues. We propose a novel approach that leverages instruction tuning and advanced prompt strategies to enhance DST performance, without relying on any predefined ontologies. Our method enables Large Language Model (LLM) to infer dialogue states through carefully designed prompts and includes an anti-hallucination mechanism to ensure accurate tracking in diverse conversation contexts. Additionally, we employ a Variational Graph Auto-Encoder (VGAE) to model and predict subsequent user intent. Our approach achieved state-of-the-art with a JGA of 42.57% outperforming existing ontology-less DST models, and performed well in open-domain real-world conversations. This work presents a significant advancement in creating more adaptive and accurate goal-oriented chatbots.
* There are 10 chapters, including references, and 2 figures used. To
be presented at the 15th IEEE International Conference on Knowledge Graphs
(ICKG2024)
Via
Oct 23, 2024
Abstract:Large language models (LLMs) have demonstrated self-improvement capabilities via feedback and refinement, but current small language models (SLMs) have had limited success in this area. Existing correction approaches often rely on distilling knowledge from LLMs, which imposes significant computation demands. In this work, we introduce CORRECTIONLM, a novel correction framework that enables SLMs to self-correct using in-context exemplars without LLM involvement. Applied to two dialogue state tracking (DST) tasks in low-resource settings, CORRECTIONLM achieves results similar to a state-of-the-art LLM at a small fraction of the computation costs.
Via
Sep 24, 2024
Abstract:Dialogue State Tracking (DST) is crucial for understanding user needs and executing appropriate system actions in task-oriented dialogues. Majority of existing DST methods are designed to work within predefined ontologies and assume the availability of gold domain labels, struggling with adapting to new slots values. While Large Language Models (LLMs)-based systems show promising zero-shot DST performance, they either require extensive computational resources or they underperform existing fully-trained systems, limiting their practicality. To address these limitations, we propose a zero-shot, open-vocabulary system that integrates domain classification and DST in a single pipeline. Our approach includes reformulating DST as a question-answering task for less capable models and employing self-refining prompts for more adaptable ones. Our system does not rely on fixed slot values defined in the ontology allowing the system to adapt dynamically. We compare our approach with existing SOTA, and show that it provides up to 20% better Joint Goal Accuracy (JGA) over previous methods on datasets like Multi-WOZ 2.1, with up to 90% fewer requests to the LLM API.
Via
Sep 15, 2024
Abstract:Estimation of a model's confidence on its outputs is critical for Conversational AI systems based on large language models (LLMs), especially for reducing hallucination and preventing over-reliance. In this work, we provide an exhaustive exploration of methods, including approaches proposed for open- and closed-weight LLMs, aimed at quantifying and leveraging model uncertainty to improve the reliability of LLM-generated responses, specifically focusing on dialogue state tracking (DST) in task-oriented dialogue systems (TODS). Regardless of the model type, well-calibrated confidence scores are essential to handle uncertainties, thereby improving model performance. We evaluate four methods for estimating confidence scores based on softmax, raw token scores, verbalized confidences, and a combination of these methods, using the area under the curve (AUC) metric to assess calibration, with higher AUC indicating better calibration. We also enhance these with a self-probing mechanism, proposed for closed models. Furthermore, we assess these methods using an open-weight model fine-tuned for the task of DST, achieving superior joint goal accuracy (JGA). Our findings also suggest that fine-tuning open-weight LLMs can result in enhanced AUC performance, indicating better confidence score calibration.
Via
Sep 10, 2024
Abstract:Dialogue State Tracking (DST) is a key part of task-oriented dialogue systems, identifying important information in conversations. However, its accuracy drops significantly in spoken dialogue environments due to named entity errors from Automatic Speech Recognition (ASR) systems. We introduce a simple yet effective data augmentation method that targets those entities to improve the robustness of DST model. Our novel method can control the placement of errors using keyword-highlighted prompts while introducing phonetically similar errors. As a result, our method generated sufficient error patterns on keywords, leading to improved accuracy in noised and low-accuracy ASR environments.
Via
Sep 10, 2024
Abstract:Traditional dialogue state tracking approaches heavily rely on extensive training data and handcrafted features, limiting their scalability and adaptability to new domains. In this paper, we propose a novel method that leverages inference and in-context learning with ChatGPT for domain transfer in dialogue state tracking, without any parameter updates. By guiding ChatGPT's chain of thought, we enable it to retrieve relevant examples and generalize knowledge to accurately infer dialogue states, solely through inference. Experimental results on the MultiWOZ dataset demonstrate competitive performance and promising generalization across domains. Our parameter-free approach offers a scalable and adaptable solution, opening new research directions in domain transfer learning.
Via
Aug 19, 2024
Abstract:An ideal dialogue system requires continuous skill acquisition and adaptation to new tasks while retaining prior knowledge. Dialogue State Tracking (DST), vital in these systems, often involves learning new services and confronting catastrophic forgetting, along with a critical capability loss termed the "Value Selection Quandary." To address these challenges, we introduce the Reason-of-Select (RoS) distillation method by enhancing smaller models with a novel 'meta-reasoning' capability. Meta-reasoning employs an enhanced multi-domain perspective, combining fragments of meta-knowledge from domain-specific dialogues during continual learning. This transcends traditional single-perspective reasoning. The domain bootstrapping process enhances the model's ability to dissect intricate dialogues from multiple possible values. Its domain-agnostic property aligns data distribution across different domains, effectively mitigating forgetting. Additionally, two novel improvements, "multi-value resolution" strategy and Semantic Contrastive Reasoning Selection method, significantly enhance RoS by generating DST-specific selection chains and mitigating hallucinations in teachers' reasoning, ensuring effective and reliable knowledge transfer. Extensive experiments validate the exceptional performance and robust generalization capabilities of our method. The source code is provided for reproducibility.
* Accepted to ACL 2024 Findings
Via
Aug 19, 2024
Abstract:A practical dialogue system requires the capacity for ongoing skill acquisition and adaptability to new tasks while preserving prior knowledge. However, current methods for Continual Dialogue State Tracking (DST), a crucial function of dialogue systems, struggle with the catastrophic forgetting issue and knowledge transfer between tasks. We present TaSL, a novel framework for task skill localization and consolidation that enables effective knowledge transfer without relying on memory replay. TaSL uses a novel group-wise technique to pinpoint task-specific and task-shared areas. Additionally, a fine-grained skill consolidation strategy protects task-specific knowledge from being forgotten while updating shared knowledge for bi-directional knowledge transfer. As a result, TaSL strikes a balance between preserving previous knowledge and excelling at new tasks. Comprehensive experiments on various backbones highlight the significant performance improvements of TaSL over existing state-of-the-art methods. The source code is provided for reproducibility.
* Accepted to ACL 2024 Main Conference
Via
Aug 15, 2024
Abstract:GuessWhich is an engaging visual dialogue game that involves interaction between a Questioner Bot (QBot) and an Answer Bot (ABot) in the context of image-guessing. In this game, QBot's objective is to locate a concealed image solely through a series of visually related questions posed to ABot. However, effectively modeling visually related reasoning in QBot's decision-making process poses a significant challenge. Current approaches either lack visual information or rely on a single real image sampled at each round as decoding context, both of which are inadequate for visual reasoning. To address this limitation, we propose a novel approach that focuses on visually related reasoning through the use of a mental model of the undisclosed image. Within this framework, QBot learns to represent mental imagery, enabling robust visual reasoning by tracking the dialogue state. The dialogue state comprises a collection of representations of mental imagery, as well as representations of the entities involved in the conversation. At each round, QBot engages in visually related reasoning using the dialogue state to construct an internal representation, generate relevant questions, and update both the dialogue state and internal representation upon receiving an answer. Our experimental results on the VisDial datasets (v0.5, 0.9, and 1.0) demonstrate the effectiveness of our proposed model, as it achieves new state-of-the-art performance across all metrics and datasets, surpassing previous state-of-the-art models. Codes and datasets from our experiments are freely available at \href{https://github.com/xubuvd/GuessWhich}.
* Published at CICAI 2023 (CAAI-A), codes at
https://github.com/xubuvd/GuessWhich
Via