Abstract:3D Gaussian Splatting (3DGS) is increasingly attracting attention in both academia and industry owing to its superior visual quality and rendering speed. However, training a 3DGS model remains a time-intensive task, especially in load imbalance scenarios where workload diversity among pixels and Gaussian spheres causes poor renderCUDA kernel performance. We introduce Balanced 3DGS, a Gaussian-wise parallelism rendering with fine-grained tiling approach in 3DGS training process, perfectly solving load-imbalance issues. First, we innovatively introduce the inter-block dynamic workload distribution technique to map workloads to Streaming Multiprocessor(SM) resources within a single GPU dynamically, which constitutes the foundation of load balancing. Second, we are the first to propose the Gaussian-wise parallel rendering technique to significantly reduce workload divergence inside a warp, which serves as a critical component in addressing load imbalance. Based on the above two methods, we further creatively put forward the fine-grained combined load balancing technique to uniformly distribute workload across all SMs, which boosts the forward renderCUDA kernel performance by up to 7.52x. Besides, we present a self-adaptive render kernel selection strategy during the 3DGS training process based on different load-balance situations, which effectively improves training efficiency.
Abstract:We consider the problem of user-adaptive 3D gaze estimation. The performance of person-independent gaze estimation is limited due to interpersonal anatomical differences. Our goal is to provide a personalized gaze estimation model specifically adapted to a target user. Previous work on user-adaptive gaze estimation requires some labeled images of the target person data to fine-tune the model at test time. However, this can be unrealistic in real-world applications, since it is cumbersome for an end-user to provide labeled images. In addition, previous work requires the training data to have both gaze labels and person IDs. This data requirement makes it infeasible to use some of the available data. To tackle these challenges, this paper proposes a new problem called efficient label-free user adaptation in gaze estimation. Our model only needs a few unlabeled images of a target user for the model adaptation. During offline training, we have some labeled source data without person IDs and some unlabeled person-specific data. Our proposed method uses a meta-learning approach to learn how to adapt to a new user with only a few unlabeled images. Our key technical innovation is to use a generalization bound from domain adaptation to define the loss function in meta-learning, so that our method can effectively make use of both the labeled source data and the unlabeled person-specific data during training. Extensive experiments validate the effectiveness of our method on several challenging benchmarks.
Abstract:This paper reviews the NTIRE 2024 Challenge on Shortform UGC Video Quality Assessment (S-UGC VQA), where various excellent solutions are submitted and evaluated on the collected dataset KVQ from popular short-form video platform, i.e., Kuaishou/Kwai Platform. The KVQ database is divided into three parts, including 2926 videos for training, 420 videos for validation, and 854 videos for testing. The purpose is to build new benchmarks and advance the development of S-UGC VQA. The competition had 200 participants and 13 teams submitted valid solutions for the final testing phase. The proposed solutions achieved state-of-the-art performances for S-UGC VQA. The project can be found at https://github.com/lixinustc/KVQChallenge-CVPR-NTIRE2024.
Abstract:Deep learning has achieved remarkable progress in various applications, heightening the importance of safeguarding the intellectual property (IP) of well-trained models. It entails not only authorizing usage but also ensuring the deployment of models in authorized data domains, i.e., making models exclusive to certain target domains. Previous methods necessitate concurrent access to source training data and target unauthorized data when performing IP protection, making them risky and inefficient for decentralized private data. In this paper, we target a practical setting where only a well-trained source model is available and investigate how we can realize IP protection. To achieve this, we propose a novel MAsk Pruning (MAP) framework. MAP stems from an intuitive hypothesis, i.e., there are target-related parameters in a well-trained model, locating and pruning them is the key to IP protection. Technically, MAP freezes the source model and learns a target-specific binary mask to prevent unauthorized data usage while minimizing performance degradation on authorized data. Moreover, we introduce a new metric aimed at achieving a better balance between source and target performance degradation. To verify the effectiveness and versatility, we have evaluated MAP in a variety of scenarios, including vanilla source-available, practical source-free, and challenging data-free. Extensive experiments indicate that MAP yields new state-of-the-art performance.
Abstract:Cereal grain plays a crucial role in the human diet as a major source of essential nutrients. Grain Appearance Inspection (GAI) serves as an essential process to determine grain quality and facilitate grain circulation and processing. However, GAI is routinely performed manually by inspectors with cumbersome procedures, which poses a significant bottleneck in smart agriculture. In this paper, we endeavor to develop an automated GAI system:AI4GrainInsp. By analyzing the distinctive characteristics of grain kernels, we formulate GAI as a ubiquitous problem: Anomaly Detection (AD), in which healthy and edible kernels are considered normal samples while damaged grains or unknown objects are regarded as anomalies. We further propose an AD model, called AD-GAI, which is trained using only normal samples yet can identify anomalies during inference. Moreover, we customize a prototype device for data acquisition and create a large-scale dataset including 220K high-quality images of wheat and maize kernels. Through extensive experiments, AD-GAI achieves considerable performance in comparison with advanced AD methods, and AI4GrainInsp has highly consistent performance compared to human experts and excels at inspection efficiency over 20x speedup. The dataset, code and models will be released at https://github.com/hellodfan/AI4GrainInsp.
Abstract:Dynamic shape computations have become critical in modern machine learning workloads, especially in emerging large language models. The success of these models has driven demand for deploying them to a diverse set of backend environments. In this paper, we present Relax, a compiler abstraction for optimizing end-to-end dynamic machine learning workloads. Relax introduces first-class symbolic shape annotations to track dynamic shape computations globally across the program. It also introduces a cross-level abstraction that encapsulates computational graphs, loop-level tensor programs, and library calls in a single representation to enable cross-level optimizations. We build an end-to-end compilation framework using the proposed approach to optimize dynamic shape models. Experimental results on large language models show that Relax delivers performance competitive with state-of-the-art hand-optimized systems across platforms and enables deployment of emerging dynamic models to a broader set of environments, including mobile phones, embedded devices, and web browsers.
Abstract:Assessing causal effects in the presence of unobserved confounding is a challenging problem. Existing studies leveraged proxy variables or multiple treatments to adjust for the confounding bias. In particular, the latter approach attributes the impact on a single outcome to multiple treatments, allowing estimating latent variables for confounding control. Nevertheless, these methods primarily focus on a single outcome, whereas in many real-world scenarios, there is greater interest in studying the effects on multiple outcomes. Besides, these outcomes are often coupled with multiple treatments. Examples include the intensive care unit (ICU), where health providers evaluate the effectiveness of therapies on multiple health indicators. To accommodate these scenarios, we consider a new setting dubbed as multiple treatments and multiple outcomes. We then show that parallel studies of multiple outcomes involved in this setting can assist each other in causal identification, in the sense that we can exploit other treatments and outcomes as proxies for each treatment effect under study. We proceed with a causal discovery method that can effectively identify such proxies for causal estimation. The utility of our method is demonstrated in synthetic data and sepsis disease.
Abstract:Proximal causal learning is a promising framework for identifying the causal effect under the existence of unmeasured confounders. Within this framework, the doubly robust (DR) estimator was derived and has shown its effectiveness in estimation, especially when the model assumption is violated. However, the current form of the DR estimator is restricted to binary treatments, while the treatment can be continuous in many real-world applications. The primary obstacle to continuous treatments resides in the delta function present in the original DR estimator, making it infeasible in causal effect estimation and introducing a heavy computational burden in nuisance function estimation. To address these challenges, we propose a kernel-based DR estimator that can well handle continuous treatments. Equipped with its smoothness, we show that its oracle form is a consistent approximation of the influence function. Further, we propose a new approach to efficiently solve the nuisance functions. We then provide a comprehensive convergence analysis in terms of the mean square error. We demonstrate the utility of our estimator on synthetic datasets and real-world applications.
Abstract:With the rapid development of electronic science and technology, the research on wearable devices is constantly updated, but for now, it is not comprehensive for wearable devices to recognize and analyze the movement of specific sports. Based on this, this paper improves wearable devices of table tennis sport, and realizes the pattern recognition and evaluation of table tennis players' motor skills through artificial intelligence. Firstly, a device is designed to collect the movement information of table tennis players and the actual movement data is processed. Secondly, a sliding window is made to divide the collected motion data into a characteristic database of six table tennis benchmark movements. Thirdly, motion features were constructed based on feature engineering, and motor skills were identified for different models after dimensionality reduction. Finally, the hierarchical evaluation system of motor skills is established with the loss functions of different evaluation indexes. The results show that in the recognition of table tennis players' motor skills, the feature-based BP neural network proposed in this paper has higher recognition accuracy and stronger generalization ability than the traditional convolutional neural network.
Abstract:Despite the tremendous advances achieved over the past years by deep learning techniques, the latest risk prediction models for industrial applications still rely on highly handtuned stage-wised statistical learning tools, such as gradient boosting and random forest methods. Different from images or languages, real-world financial data are high-dimensional, sparse, noisy and extremely imbalanced, which makes deep neural network models particularly challenging to train and fragile in practice. In this work, we propose DeRisk, an effective deep learning risk prediction framework for credit risk prediction on real-world financial data. DeRisk is the first deep risk prediction model that outperforms statistical learning approaches deployed in our company's production system. We also perform extensive ablation studies on our method to present the most critical factors for the empirical success of DeRisk.