Abstract:Recent advances in foundation models, especially in large multi-modal models and conversational agents, have ignited interest in the potential of generally capable embodied agents. Such agents would require the ability to perform new tasks in many different real-world environments. However, current foundation models fail to accurately model physical interactions with the real world thus not sufficient for Embodied AI. The study of causality lends itself to the construction of veridical world models, which are crucial for accurately predicting the outcomes of possible interactions. This paper focuses on the prospects of building foundation world models for the upcoming generation of embodied agents and presents a novel viewpoint on the significance of causality within these. We posit that integrating causal considerations is vital to facilitate meaningful physical interactions with the world. Finally, we demystify misconceptions about causality in this context and present our outlook for future research.
Abstract:Many applications of imitation learning require the agent to generate the full distribution of behaviour observed in the training data. For example, to evaluate the safety of autonomous vehicles in simulation, accurate and diverse behaviour models of other road users are paramount. Existing methods that improve this distributional realism typically rely on hierarchical policies. These condition the policy on types such as goals or personas that give rise to multi-modal behaviour. However, such methods are often inappropriate for stochastic environments where the agent must also react to external factors: because agent types are inferred from the observed future trajectory during training, these environments require that the contributions of internal and external factors to the agent behaviour are disentangled and only internal factors, i.e., those under the agent's control, are encoded in the type. Encoding future information about external factors leads to inappropriate agent reactions during testing, when the future is unknown and types must be drawn independently from the actual future. We formalize this challenge as distribution shift in the conditional distribution of agent types under environmental stochasticity. We propose Robust Type Conditioning (RTC), which eliminates this shift with adversarial training under randomly sampled types. Experiments on two domains, including the large-scale Waymo Open Motion Dataset, show improved distributional realism while maintaining or improving task performance compared to state-of-the-art baselines.
Abstract:The pre-trained multi-lingual XLSR model generalizes well for language identification after fine-tuning on unseen languages. However, the performance significantly degrades when the languages are not very distinct from each other, for example, in the case of dialects. Low resource dialect classification remains a challenging problem to solve. We present a new data augmentation method that leverages model training dynamics of individual data points to improve sampling for latent mixup. The method works well in low-resource settings where generalization is paramount. Our datamaps-based mixup technique, which we call Map-Mix improves weighted F1 scores by 2% compared to the random mixup baseline and results in a significantly well-calibrated model. The code for our method is open sourced on https://github.com/skit-ai/Map-Mix.
Abstract:Effectively exploring the environment is a key challenge in reinforcement learning (RL). We address this challenge by defining a novel intrinsic reward based on a foundation model, such as contrastive language image pretraining (CLIP), which can encode a wealth of domain-independent semantic visual-language knowledge about the world. Specifically, our intrinsic reward is defined based on pre-trained CLIP embeddings without any fine-tuning or learning on the target RL task. We demonstrate that CLIP-based intrinsic rewards can drive exploration towards semantically meaningful states and outperform state-of-the-art methods in challenging sparse-reward procedurally-generated environments.
Abstract:The estimation of speaker characteristics such as age and height is a challenging task, having numerous applications in voice forensic analysis. In this work, we propose a bi-encoder transformer mixture model for speaker age and height estimation. Considering the wide differences in male and female voice characteristics such as differences in formant and fundamental frequencies, we propose the use of two separate transformer encoders for the extraction of specific voice features in the male and female gender, using wav2vec 2.0 as a common-level feature extractor. This architecture reduces the interference effects during backpropagation and improves the generalizability of the model. We perform our experiments on the TIMIT dataset and significantly outperform the current state-of-the-art results on age estimation. Specifically, we achieve root mean squared error (RMSE) of 5.54 years and 6.49 years for male and female age estimation, respectively. Further experiment to evaluate the relative importance of different phonetic types for our task demonstrate that vowel sounds are the most distinguishing for age estimation.
Abstract:Collective intelligence is a fundamental trait shared by several species of living organisms. It has allowed them to thrive in the diverse environmental conditions that exist on our planet. From simple organisations in an ant colony to complex systems in human groups, collective intelligence is vital for solving complex survival tasks. As is commonly observed, such natural systems are flexible to changes in their structure. Specifically, they exhibit a high degree of generalization when the abilities or the total number of agents changes within a system. We term this phenomenon as Combinatorial Generalization (CG). CG is a highly desirable trait for autonomous systems as it can increase their utility and deployability across a wide range of applications. While recent works addressing specific aspects of CG have shown impressive results on complex domains, they provide no performance guarantees when generalizing towards novel situations. In this work, we shed light on the theoretical underpinnings of CG for cooperative multi-agent systems (MAS). Specifically, we study generalization bounds under a linear dependence of the underlying dynamics on the agent capabilities, which can be seen as a generalization of Successor Features to MAS. We then extend the results first for Lipschitz and then arbitrary dependence of rewards on team capabilities. Finally, empirical analysis on various domains using the framework of multi-agent reinforcement learning highlights important desiderata for multi-agent algorithms towards ensuring CG.
Abstract:Policy gradient methods are an attractive approach to multi-agent reinforcement learning problems due to their convergence properties and robustness in partially observable scenarios. However, there is a significant performance gap between state-of-the-art policy gradient and value-based methods on the popular StarCraft Multi-Agent Challenge (SMAC) benchmark. In this paper, we introduce semi-on-policy (SOP) training as an effective and computationally efficient way to address the sample inefficiency of on-policy policy gradient methods. We enhance two state-of-the-art policy gradient algorithms with SOP training, demonstrating significant performance improvements. Furthermore, we show that our methods perform as well or better than state-of-the-art value-based methods on a variety of SMAC tasks.
Abstract:Most recently developed approaches to cooperative multi-agent reinforcement learning in the \emph{centralized training with decentralized execution} setting involve estimating a centralized, joint value function. In this paper, we demonstrate that, despite its various theoretical shortcomings, Independent PPO (IPPO), a form of independent learning in which each agent simply estimates its local value function, can perform just as well as or better than state-of-the-art joint learning approaches on popular multi-agent benchmark suite SMAC with little hyperparameter tuning. We also compare IPPO to several variants; the results suggest that IPPO's strong performance may be due to its robustness to some forms of environment non-stationarity.
Abstract:This paper focuses on cooperative value-based multi-agent reinforcement learning (MARL) in the paradigm of centralized training with decentralized execution (CTDE). Current state-of-the-art value-based MARL methods leverage CTDE to learn a centralized joint-action value function as a monotonic mixing of each agent's utility function, which enables easy decentralization. However, this monotonic restriction leads to inefficient exploration in tasks with nonmonotonic returns due to suboptimal approximations of the values of joint actions. To address this, we present a novel MARL approach called Universal Value Exploration (UneVEn), which uses universal successor features (USFs) to learn policies of tasks related to the target task, but with simpler reward functions in a sample efficient manner. UneVEn uses novel action-selection schemes between randomly sampled related tasks during exploration, which enables the monotonic joint-action value function of the target task to place more importance on useful joint actions. Empirical results on a challenging cooperative predator-prey task requiring significant coordination amongst agents show that UneVEn significantly outperforms state-of-the-art baselines.
Abstract:Role-based learning holds the promise of achieving scalable multi-agent learning by decomposing complex tasks using roles. However, it is largely unclear how to efficiently discover such a set of roles. To solve this problem, we propose to first decompose joint action spaces into restricted role action spaces by clustering actions according to their effects on the environment and other agents. Learning a role selector based on action effects makes role discovery much easier because it forms a bi-level learning hierarchy -- the role selector searches in a smaller role space and at a lower temporal resolution, while role policies learn in significantly reduced primitive action-observation spaces. We further integrate information about action effects into the role policies to boost learning efficiency and policy generalization. By virtue of these advances, our method (1) outperforms the current state-of-the-art MARL algorithms on 10 of the 14 scenarios that comprise the challenging StarCraft II micromanagement benchmark and (2) achieves rapid transfer to new environments with three times the number of agents. Demonstrative videos are available at https://sites.google.com/view/rode-marl .