Abstract:Audio-visual semantic segmentation (AVSS) aims to segment and classify sounding objects in videos with acoustic cues. However, most approaches operate on the close-set assumption and only identify pre-defined categories from training data, lacking the generalization ability to detect novel categories in practical applications. In this paper, we introduce a new task: open-vocabulary audio-visual semantic segmentation, extending AVSS task to open-world scenarios beyond the annotated label space. This is a more challenging task that requires recognizing all categories, even those that have never been seen nor heard during training. Moreover, we propose the first open-vocabulary AVSS framework, OV-AVSS, which mainly consists of two parts: 1) a universal sound source localization module to perform audio-visual fusion and locate all potential sounding objects and 2) an open-vocabulary classification module to predict categories with the help of the prior knowledge from large-scale pre-trained vision-language models. To properly evaluate the open-vocabulary AVSS, we split zero-shot training and testing subsets based on the AVSBench-semantic benchmark, namely AVSBench-OV. Extensive experiments demonstrate the strong segmentation and zero-shot generalization ability of our model on all categories. On the AVSBench-OV dataset, OV-AVSS achieves 55.43% mIoU on base categories and 29.14% mIoU on novel categories, exceeding the state-of-the-art zero-shot method by 41.88%/20.61% and open-vocabulary method by 10.2%/11.6%. The code is available at https://github.com/ruohaoguo/ovavss.
Abstract:This work is motivated by two key trends. On one hand, large language models (LLMs) have shown remarkable versatility in various generative tasks such as writing, drawing, and question answering, significantly reducing the time required for many routine tasks. On the other hand, researchers, whose work is not only time-consuming but also highly expertise-demanding, face increasing challenges as they have to spend more time reading, writing, and reviewing papers. This raises the question: how can LLMs potentially assist researchers in alleviating their heavy workload? This study focuses on the topic of LLMs assist NLP Researchers, particularly examining the effectiveness of LLM in assisting paper (meta-)reviewing and its recognizability. To address this, we constructed the ReviewCritique dataset, which includes two types of information: (i) NLP papers (initial submissions rather than camera-ready) with both human-written and LLM-generated reviews, and (ii) each review comes with "deficiency" labels and corresponding explanations for individual segments, annotated by experts. Using ReviewCritique, this study explores two threads of research questions: (i) "LLMs as Reviewers", how do reviews generated by LLMs compare with those written by humans in terms of quality and distinguishability? (ii) "LLMs as Metareviewers", how effectively can LLMs identify potential issues, such as Deficient or unprofessional review segments, within individual paper reviews? To our knowledge, this is the first work to provide such a comprehensive analysis.
Abstract:In this paper, we present the Sub-Adjacent Transformer with a novel attention mechanism for unsupervised time series anomaly detection. Unlike previous approaches that rely on all the points within some neighborhood for time point reconstruction, our method restricts the attention to regions not immediately adjacent to the target points, termed sub-adjacent neighborhoods. Our key observation is that owing to the rarity of anomalies, they typically exhibit more pronounced differences from their sub-adjacent neighborhoods than from their immediate vicinities. By focusing the attention on the sub-adjacent areas, we make the reconstruction of anomalies more challenging, thereby enhancing their detectability. Technically, our approach concentrates attention on the non-diagonal areas of the attention matrix by enlarging the corresponding elements in the training stage. To facilitate the implementation of the desired attention matrix pattern, we adopt linear attention because of its flexibility and adaptability. Moreover, a learnable mapping function is proposed to improve the performance of linear attention. Empirically, the Sub-Adjacent Transformer achieves state-of-the-art performance across six real-world anomaly detection benchmarks, covering diverse fields such as server monitoring, space exploration, and water treatment.
Abstract:In this paper, we propose a new multi-modal task, namely audio-visual instance segmentation (AVIS), in which the goal is to identify, segment, and track individual sounding object instances in audible videos, simultaneously. To our knowledge, it is the first time that instance segmentation has been extended into the audio-visual domain. To better facilitate this research, we construct the first audio-visual instance segmentation benchmark (AVISeg). Specifically, AVISeg consists of 1,258 videos with an average duration of 62.6 seconds from YouTube and public audio-visual datasets, where 117 videos have been annotated by using an interactive semi-automatic labeling tool based on the Segment Anything Model (SAM). In addition, we present a simple baseline model for the AVIS task. Our new model introduces an audio branch and a cross-modal fusion module to Mask2Former to locate all sounding objects. Finally, we evaluate the proposed method using two backbones on AVISeg. We believe that AVIS will inspire the community towards a more comprehensive multi-modal understanding.
Abstract:Audio-visual video parsing is the task of categorizing a video at the segment level with weak labels, and predicting them as audible or visible events. Recent methods for this task leverage the attention mechanism to capture the semantic correlations among the whole video across the audio-visual modalities. However, these approaches have overlooked the importance of individual segments within a video and the relationship among them, and tend to rely on a single modality when learning features. In this paper, we propose a novel interactive-enhanced cross-modal perception method~(CM-PIE), which can learn fine-grained features by applying a segment-based attention module. Furthermore, a cross-modal aggregation block is introduced to jointly optimize the semantic representation of audio and visual signals by enhancing inter-modal interactions. The experimental results show that our model offers improved parsing performance on the Look, Listen, and Parse dataset compared to other methods.
Abstract:In this paper, we study the task of instructional dialogue and focus on the cooking domain. Analyzing the generated output of the GPT-J model, we reveal that the primary challenge for a recipe-grounded dialog system is how to provide the instructions in the correct order. We hypothesize that this is due to the model's lack of understanding of user intent and inability to track the instruction state (i.e., which step was last instructed). Therefore, we propose to explore two auxiliary subtasks, namely User Intent Detection and Instruction State Tracking, to support Response Generation with improved instruction grounding. Experimenting with our newly collected dataset, ChattyChef, shows that incorporating user intent and instruction state information helps the response generation model mitigate the incorrect order issue. Furthermore, to investigate whether ChatGPT has completely solved this task, we analyze its outputs and find that it also makes mistakes (10.7% of the responses), about half of which are out-of-order instructions. We will release ChattyChef to facilitate further research in this area at: https://github.com/octaviaguo/ChattyChef.
Abstract:Style is used to convey authors' intentions and attitudes. Despite the success of large pre-trained language models on style classification, prior work relies on fine-tuning with labeled examples. Prompting large language models to classify style without fine-tuning is challenging because language styles can be difficult to define. In this study, we investigate the effectiveness of style lexicons as a means for instructing language models how to identify new styles that are unseen during training. Our experiments show that lexicon-based instructions improve transfer zero-shot performance significantly. We will release our code and data.
Abstract:Images, captured by a camera, play a critical role in training Deep Neural Networks (DNNs). Usually, we assume the images acquired by cameras are consistent with the ones perceived by human eyes. However, due to the different physical mechanisms between human-vision and computer-vision systems, the final perceived images could be very different in some cases, for example shooting on digital monitors. In this paper, we find a special phenomenon in digital image processing, the moir\'e effect, that could cause unnoticed security threats to DNNs. Based on it, we propose a Moir\'e Attack (MA) that generates the physical-world moir\'e pattern adding to the images by mimicking the shooting process of digital devices. Extensive experiments demonstrate that our proposed digital Moir\'e Attack (MA) is a perfect camouflage for attackers to tamper with DNNs with a high success rate ($100.0\%$ for untargeted and $97.0\%$ for targeted attack with the noise budget $\epsilon=4$), high transferability rate across different models, and high robustness under various defenses. Furthermore, MA owns great stealthiness because the moir\'e effect is unavoidable due to the camera's inner physical structure, which therefore hardly attracts the awareness of humans. Our code is available at https://github.com/Dantong88/Moire_Attack.
Abstract:Most recent transformer-based models show impressive performance on vision tasks, even better than Convolution Neural Networks (CNN). In this work, we present a novel, flexible, and effective transformer-based model for high-quality instance segmentation. The proposed method, Segmenting Objects with TRansformers (SOTR), simplifies the segmentation pipeline, building on an alternative CNN backbone appended with two parallel subtasks: (1) predicting per-instance category via transformer and (2) dynamically generating segmentation mask with the multi-level upsampling module. SOTR can effectively extract lower-level feature representations and capture long-range context dependencies by Feature Pyramid Network (FPN) and twin transformer, respectively. Meanwhile, compared with the original transformer, the proposed twin transformer is time- and resource-efficient since only a row and a column attention are involved to encode pixels. Moreover, SOTR is easy to be incorporated with various CNN backbones and transformer model variants to make considerable improvements for the segmentation accuracy and training convergence. Extensive experiments show that our SOTR performs well on the MS COCO dataset and surpasses state-of-the-art instance segmentation approaches. We hope our simple but strong framework could serve as a preferment baseline for instance-level recognition. Our code is available at https://github.com/easton-cau/SOTR.
Abstract:Leaf segmentation is the most direct and effective way for high-throughput plant phenotype data analysis and quantitative researches of complex traits. Currently, the primary goal of plant phenotyping is to raise the accuracy of the autonomous phenotypic measurement. In this work, we present the LeafMask neural network, a new end-to-end model to delineate each leaf region and count the number of leaves, with two main components: 1) the mask assembly module merging position-sensitive bases of each predicted box after non-maximum suppression (NMS) and corresponding coefficients to generate original masks; 2) the mask refining module elaborating leaf boundaries from the mask assembly module by the point selection strategy and predictor. In addition, we also design a novel and flexible multi-scale attention module for the dual attention-guided mask (DAG-Mask) branch to effectively enhance information expression and produce more accurate bases. Our main contribution is to generate the final improved masks by combining the mask assembly module with the mask refining module under the anchor-free instance segmentation paradigm. We validate our LeafMask through extensive experiments on Leaf Segmentation Challenge (LSC) dataset. Our proposed model achieves the 90.09% BestDice score outperforming other state-of-the-art approaches.