Abstract:The scarcity of labeled action data poses a considerable challenge for developing machine learning algorithms for robotic object manipulation. It is expensive and often infeasible for a robot to interact with many objects. Conversely, visual data of objects, without interaction, is abundantly available and can be leveraged for pretraining and feature extraction. However, current methods that rely on image data for pretraining do not easily adapt to task-specific predictions, since the learned features are not guaranteed to be relevant. This paper introduces the Semi-Supervised Neural Process (SSNP): an adaptive reward-prediction model designed for scenarios in which only a small subset of objects have labeled interaction data. In addition to predicting reward labels, the latent-space of the SSNP is jointly trained with an autoencoding objective using passive data from a much larger set of objects. Jointly training with both types of data allows the model to focus more effectively on generalizable features and minimizes the need for extensive retraining, thereby reducing computational demands. The efficacy of SSNP is demonstrated through a door-opening task, leading to better performance than other semi-supervised methods, and only using a fraction of the data compared to other adaptive models.
Abstract:Self-supervised learning is a powerful approach for developing traversability models for off-road navigation, but these models often struggle with inputs unseen during training. Existing methods utilize techniques like evidential deep learning to quantify model uncertainty, helping to identify and avoid out-of-distribution terrain. However, always avoiding out-of-distribution terrain can be overly conservative, e.g., when novel terrain can be effectively analyzed using a physics-based model. To overcome this challenge, we introduce Physics-Informed Evidential Traversability (PIETRA), a self-supervised learning framework that integrates physics priors directly into the mathematical formulation of evidential neural networks and introduces physics knowledge implicitly through an uncertainty-aware, physics-informed training loss. Our evidential network seamlessly transitions between learned and physics-based predictions for out-of-distribution inputs. Additionally, the physics-informed loss regularizes the learned model, ensuring better alignment with the physics model. Extensive simulations and hardware experiments demonstrate that PIETRA improves both learning accuracy and navigation performance in environments with significant distribution shifts.
Abstract:We present FORGE, a method that enables sim-to-real transfer of contact-rich manipulation policies in the presence of significant pose uncertainty. FORGE combines a force threshold mechanism with a dynamics randomization scheme during policy learning in simulation, to enable the robust transfer of the learned policies to the real robot. At deployment, FORGE policies, conditioned on a maximum allowable force, adaptively perform contact-rich tasks while respecting the specified force threshold, regardless of the controller gains. Additionally, FORGE autonomously predicts a termination action once the task has succeeded. We demonstrate that FORGE can be used to learn a variety of robust contact-rich policies, enabling multi-stage assembly of a planetary gear system, which requires success across three assembly tasks: nut-threading, insertion, and gear meshing. Project website can be accessed at https://noseworm.github.io/forge/.
Abstract:When using sampling-based motion planners, such as PRMs, in configuration spaces, it is difficult to determine how many samples are required for the PRM to find a solution consistently. This is relevant in Task and Motion Planning (TAMP), where many motion planning problems must be solved in sequence. We attempt to solve this problem by proving an upper bound on the number of samples that are sufficient, with high probability, to find a solution by drawing on prior work in deterministic sampling and sample complexity theory. We also introduce a numerical algorithm to compute a tighter number of samples based on the proof of the sample complexity theorem we apply to derive our bound. Our experiments show that our numerical bounding algorithm is tight within two orders of magnitude on planar planning problems and becomes looser as the problem's dimensionality increases. When deployed as a heuristic to schedule samples in a TAMP planner, we also observe planning time improvements in planar problems. While our experiments show much work remains to tighten our bounds, the ideas presented in this paper are a step towards a practical sample bound.
Abstract:We would like to enable a collaborative multiagent team to navigate at long length scales and under uncertainty in real-world environments. In practice, planning complexity scales with the number of agents in the team, with the length scale of the environment, and with environmental uncertainty. Enabling tractable planning requires developing abstract models that can represent complex, high-quality plans. However, such models often abstract away information needed to generate directly-executable plans for real-world agents in real-world environments, as planning in such detail, especially in the presence of real-world uncertainty, would be computationally intractable. In this paper, we describe the deployment of a planning system that used a hierarchy of planners to execute collaborative multiagent navigation tasks in real-world, unknown environments. By developing a planning system that was robust to failures at every level of the planning hierarchy, we enabled the team to complete collaborative navigation tasks, even in the presence of imperfect planning abstractions and real-world uncertainty. We deployed our approach on a Clearpath Husky-Jackal team navigating in a structured outdoor environment, and demonstrated that the system enabled the agents to successfully execute collaborative plans.
Abstract:Multi-agent robotic systems are prone to deadlocks in an obstacle environment where the system can get stuck away from its desired location under a smooth low-level control policy. Without an external intervention, often in terms of a high-level command, it is not possible to guarantee that just a low-level control policy can resolve such deadlocks. Utilizing the generalizability and low data requirements of large language models (LLMs), this paper explores the possibility of using LLMs for deadlock resolution. We propose a hierarchical control framework where an LLM resolves deadlocks by assigning a leader and direction for the leader to move along. A graph neural network (GNN) based low-level distributed control policy executes the assigned plan. We systematically study various prompting techniques to improve LLM's performance in resolving deadlocks. In particular, as part of prompt engineering, we provide in-context examples for LLMs. We conducted extensive experiments on various multi-robot environments with up to 15 agents and 40 obstacles. Our results demonstrate that LLM-based high-level planners are effective in resolving deadlocks in MRS.
Abstract:Recent work in the construction of 3D scene graphs has enabled mobile robots to build large-scale hybrid metric-semantic hierarchical representations of the world. These detailed models contain information that is useful for planning, however how to derive a planning domain from a 3D scene graph that enables efficient computation of executable plans is an open question. In this work, we present a novel approach for defining and solving Task and Motion Planning problems in large-scale environments using hierarchical 3D scene graphs. We identify a method for building sparse problem domains which enable scaling to large scenes, and propose a technique for incrementally adding objects to that domain during planning time to avoid wasting computation on irrelevant elements of the scene graph. We test our approach in two hand crafted domains as well as two scene graphs built from perception, including one constructed from the KITTI dataset. A video supplement is available at https://youtu.be/63xuCCaN0I4.
Abstract:Prompt optimization aims to find the best prompt to a large language model (LLM) for a given task. LLMs have been successfully used to help find and improve prompt candidates for single-step tasks. However, realistic tasks for agents are multi-step and introduce new challenges: (1) Prompt content is likely to be more extensive and complex, making it more difficult for LLMs to analyze errors, (2) the impact of an individual step is difficult to evaluate, and (3) different people may have varied preferences about task execution. While humans struggle to optimize prompts, they are good at providing feedback about LLM outputs; we therefore introduce a new LLM-driven discrete prompt optimization framework that incorporates human-designed feedback rules about potential errors to automatically offer direct suggestions for improvement. Our framework is stylized as a genetic algorithm in which an LLM generates new candidate prompts from a parent prompt and its associated feedback; we use a learned heuristic function that predicts prompt performance to efficiently sample from these candidates. This approach significantly outperforms both human-engineered prompts and several other prompt optimization methods across eight representative multi-step tasks (an average 27.7% and 28.2% improvement to current best methods on GPT-3.5 and GPT-4, respectively). We further show that the score function for tasks can be modified to better align with individual preferences. We believe our work can serve as a benchmark for automatic prompt optimization for LLM-driven multi-step tasks. Datasets and Codes are available at https://github.com/yongchao98/PROMST. Project Page is available at https://yongchao98.github.io/MIT-REALM-PROMST.
Abstract:Automated creation of synthetic traffic scenarios is a key part of validating the safety of autonomous vehicles (AVs). In this paper, we propose Scenario Diffusion, a novel diffusion-based architecture for generating traffic scenarios that enables controllable scenario generation. We combine latent diffusion, object detection and trajectory regression to generate distributions of synthetic agent poses, orientations and trajectories simultaneously. To provide additional control over the generated scenario, this distribution is conditioned on a map and sets of tokens describing the desired scenario. We show that our approach has sufficient expressive capacity to model diverse traffic patterns and generalizes to different geographical regions.
Abstract:Traversing terrain with good traction is crucial for achieving fast off-road navigation. Instead of manually designing costs based on terrain features, existing methods learn terrain properties directly from data via self-supervision, but challenges remain to properly quantify and mitigate risks due to uncertainties in learned models. This work efficiently quantifies both aleatoric and epistemic uncertainties by learning discrete traction distributions and probability densities of the traction predictor's latent features. Leveraging evidential deep learning, we parameterize Dirichlet distributions with the network outputs and propose a novel uncertainty-aware squared Earth Mover's distance loss with a closed-form expression that improves learning accuracy and navigation performance. The proposed risk-aware planner simulates state trajectories with the worst-case expected traction to handle aleatoric uncertainty, and penalizes trajectories moving through terrain with high epistemic uncertainty. Our approach is extensively validated in simulation and on wheeled and quadruped robots, showing improved navigation performance compared to methods that assume no slip, assume the expected traction, or optimize for the worst-case expected cost.