Abstract:Multi-modal entity alignment (MMEA) is essential for enhancing knowledge graphs and improving information retrieval and question-answering systems. Existing methods often focus on integrating modalities through their complementarity but overlook the specificity of each modality, which can obscure crucial features and reduce alignment accuracy. To solve this, we propose the Multi-modal Consistency and Specificity Fusion Framework (MCSFF), which innovatively integrates both complementary and specific aspects of modalities. We utilize Scale Computing's hyper-converged infrastructure to optimize IT management and resource allocation in large-scale data processing. Our framework first computes similarity matrices for each modality using modality embeddings to preserve their unique characteristics. Then, an iterative update method denoises and enhances modality features to fully express critical information. Finally, we integrate the updated information from all modalities to create enriched and precise entity representations. Experiments show our method outperforms current state-of-the-art MMEA baselines on the MMKG dataset, demonstrating its effectiveness and practical potential.
Abstract:Current robot autonomy struggles to operate beyond the assumed Operational Design Domain (ODD), the specific set of conditions and environments in which the system is designed to function, while the real-world is rife with uncertainties that may lead to failures. Automating recovery remains a significant challenge. Traditional methods often rely on human intervention to manually address failures or require exhaustive enumeration of failure cases and the design of specific recovery policies for each scenario, both of which are labor-intensive. Foundational Vision-Language Models (VLMs), which demonstrate remarkable common-sense generalization and reasoning capabilities, have broader, potentially unbounded ODDs. However, limitations in spatial reasoning continue to be a common challenge for many VLMs when applied to robot control and motion-level error recovery. In this paper, we investigate how optimizing visual and text prompts can enhance the spatial reasoning of VLMs, enabling them to function effectively as black-box controllers for both motion-level position correction and task-level recovery from unknown failures. Specifically, the optimizations include identifying key visual elements in visual prompts, highlighting these elements in text prompts for querying, and decomposing the reasoning process for failure detection and control generation. In experiments, prompt optimizations significantly outperform pre-trained Vision-Language-Action Models in correcting motion-level position errors and improve accuracy by 65.78% compared to VLMs with unoptimized prompts. Additionally, for task-level failures, optimized prompts enhanced the success rate by 5.8%, 5.8%, and 7.5% in VLMs' abilities to detect failures, analyze issues, and generate recovery plans, respectively, across a wide range of unknown errors in Lego assembly.
Abstract:Learning dexterous manipulation skills presents significant challenges due to complex nonlinear dynamics that underlie the interactions between objects and multi-fingered hands. Koopman operators have emerged as a robust method for modeling such nonlinear dynamics within a linear framework. However, current methods rely on runtime access to ground-truth (GT) object states, making them unsuitable for vision-based practical applications. Unlike image-to-action policies that implicitly learn visual features for control, we use a dynamics model, specifically the Koopman operator, to learn visually interpretable object features critical for robotic manipulation within a scene. We construct a Koopman operator using object features predicted by a feature extractor and utilize it to auto-regressively advance system states. We train the feature extractor to embed scene information into object features, thereby enabling the accurate propagation of robot trajectories. We evaluate our approach on simulated and real-world robot tasks, with results showing that it outperformed the model-based imitation learning NDP by 1.08$\times$ and the image-to-action Diffusion Policy by 1.16$\times$. The results suggest that our method maintains task success rates with learned features and extends applicability to real-world manipulation without GT object states.
Abstract:Complex networks pervade various real-world systems, from the natural environment to human societies. The essence of these networks is in their ability to transition and evolve from microscopic disorder-where network topology and node dynamics intertwine-to a macroscopic order characterized by certain collective behaviors. Over the past two decades, complex network science has significantly enhanced our understanding of the statistical mechanics, structures, and dynamics underlying real-world networks. Despite these advancements, there remain considerable challenges in exploring more realistic systems and enhancing practical applications. The emergence of artificial intelligence (AI) technologies, coupled with the abundance of diverse real-world network data, has heralded a new era in complex network science research. This survey aims to systematically address the potential advantages of AI in overcoming the lingering challenges of complex network research. It endeavors to summarize the pivotal research problems and provide an exhaustive review of the corresponding methodologies and applications. Through this comprehensive survey-the first of its kind on AI for complex networks-we expect to provide valuable insights that will drive further research and advancement in this interdisciplinary field.
Abstract:Crowd simulation holds crucial applications in various domains, such as urban planning, architectural design, and traffic arrangement. In recent years, physics-informed machine learning methods have achieved state-of-the-art performance in crowd simulation but fail to model the heterogeneity and multi-modality of human movement comprehensively. In this paper, we propose a social physics-informed diffusion model named SPDiff to mitigate the above gap. SPDiff takes both the interactive and historical information of crowds in the current timeframe to reverse the diffusion process, thereby generating the distribution of pedestrian movement in the subsequent timeframe. Inspired by the well-known social physics model, i.e., Social Force, regarding crowd dynamics, we design a crowd interaction module to guide the denoising process and further enhance this module with the equivariant properties of crowd interactions. To mitigate error accumulation in long-term simulations, we propose a multi-frame rollout training algorithm for diffusion modeling. Experiments conducted on two real-world datasets demonstrate the superior performance of SPDiff in terms of macroscopic and microscopic evaluation metrics. Code and appendix are available at https://github.com/tsinghua-fib-lab/SPDiff.
Abstract:Recent works have shown that sequence modeling can be effectively used to train reinforcement learning (RL) policies. However, the success of applying existing sequence models to planning, in which we wish to obtain a trajectory of actions to reach some goal, is less straightforward. The typical autoregressive generation procedures of sequence models preclude sequential refinement of earlier steps, which limits the effectiveness of a predicted plan. In this paper, we suggest an approach towards integrating planning with sequence models based on the idea of iterative energy minimization, and illustrate how such a procedure leads to improved RL performance across different tasks. We train a masked language model to capture an implicit energy function over trajectories of actions, and formulate planning as finding a trajectory of actions with minimum energy. We illustrate how this procedure enables improved performance over recent approaches across BabyAI and Atari environments. We further demonstrate unique benefits of our iterative optimization procedure, involving new task generalization, test-time constraints adaptation, and the ability to compose plans together. Project website: https://hychen-naza.github.io/projects/LEAP
Abstract:This paper describes a hierarchical solution consisting of a multi-phase planner and a low-level safe controller to jointly solve the safe navigation problem in crowded, dynamic, and uncertain environments. The planner employs dynamic gap analysis and trajectory optimization to achieve collision avoidance with respect to the predicted trajectories of dynamic agents within the sensing and planning horizon and with robustness to agent uncertainty. To address uncertainty over the planning horizon and real-time safety, a fast reactive safe set algorithm (SSA) is adopted, which monitors and modifies the unsafe control during trajectory tracking. Compared to other existing methods, our approach offers theoretical guarantees of safety and achieves collision-free navigation with higher probability in uncertain environments, as demonstrated in scenarios with 20 and 50 dynamic agents. Project website: https://hychen-naza.github.io/projects/HDAGap/.
Abstract:This study proposes a safe and sample-efficient reinforcement learning (RL) framework to address two major challenges in developing applicable RL algorithms: satisfying safety constraints and efficiently learning with limited samples. To guarantee safety in real-world complex environments, we use the safe set algorithm (SSA) to monitor and modify the nominal controls, and evaluate SSA+RL in a clustered dynamic environment which is challenging to be solved by existing RL algorithms. However, the SSA+RL framework is usually not sample-efficient especially in reward-sparse environments, which has not been addressed in previous safe RL works. To improve the learning efficiency, we propose three techniques: (1) avoiding behaving overly conservative by adapting the SSA; (2) encouraging safe exploration using random network distillation with safety constraints; (3) improving policy convergence by treating SSA as expert demonstrations and directly learn from that. The experimental results show that our framework can achieve better safety performance compare to other safe RL methods during training and solve the task with substantially fewer episodes. Project website: https://hychen-naza.github.io/projects/Safe_RL/.
Abstract:We propose a new 6-DoF grasp pose synthesis approach from 2D/2.5D input based on keypoints. Keypoint-based grasp detector from image input has demonstrated promising results in the previous study, where the additional visual information provided by color images compensates for the noisy depth perception. However, it relies heavily on accurately predicting the location of keypoints in the image space. In this paper, we devise a new grasp generation network that reduces the dependency on precise keypoint estimation. Given an RGB-D input, our network estimates both the grasp pose from keypoint detection as well as scale towards the camera. We further re-design the keypoint output space in order to mitigate the negative impact of keypoint prediction noise to Perspective-n-Point (PnP) algorithm. Experiments show that the proposed method outperforms the baseline by a large margin, validating the efficacy of our approach. Finally, despite trained on simple synthetic objects, our method demonstrate sim-to-real capacity by showing competitive results in real-world robot experiments.
Abstract:Home-assistant robots have been a long-standing research topic, and one of the biggest challenges is searching for required objects in housing environments. Previous object-goal navigation requires the robot to search for a target object category in an unexplored environment, which may not be suitable for home-assistant robots that typically have some level of semantic knowledge of the environment, such as the location of static furniture. In our approach, we leverage this knowledge and the fact that a target object may be located close to its related objects for efficient navigation. To achieve this, we train a graph neural network using the Visual Genome dataset to learn the object co-occurrence relationships and formulate the searching process as iteratively predicting the possible areas where the target object may be located. This approach is entirely zero-shot, meaning it doesn't require new accurate object correlation in the test environment. We empirically show that our method outperforms prior correlational object search algorithms. As our ultimate goal is to build fully autonomous assistant robots for everyday use, we further integrate the task planner for parsing natural language and generating task-completing plans with object navigation to execute human instructions. We demonstrate the effectiveness of our proposed pipeline in both the AI2-THOR simulator and a Stretch robot in a real-world environment.