Jack
Abstract:Red teaming assesses how large language models (LLMs) can produce content that violates norms, policies, and rules set during their safety training. However, most existing automated methods in the literature are not representative of the way humans tend to interact with AI models. Common users of AI models may not have advanced knowledge of adversarial machine learning methods or access to model internals, and they do not spend a lot of time crafting a single highly effective adversarial prompt. Instead, they are likely to make use of techniques commonly shared online and exploit the multiturn conversational nature of LLMs. While manual testing addresses this gap, it is an inefficient and often expensive process. To address these limitations, we introduce the Generative Offensive Agent Tester (GOAT), an automated agentic red teaming system that simulates plain language adversarial conversations while leveraging multiple adversarial prompting techniques to identify vulnerabilities in LLMs. We instantiate GOAT with 7 red teaming attacks by prompting a general-purpose model in a way that encourages reasoning through the choices of methods available, the current target model's response, and the next steps. Our approach is designed to be extensible and efficient, allowing human testers to focus on exploring new areas of risk while automation covers the scaled adversarial stress-testing of known risk territory. We present the design and evaluation of GOAT, demonstrating its effectiveness in identifying vulnerabilities in state-of-the-art LLMs, with an ASR@10 of 97% against Llama 3.1 and 88% against GPT-4 on the JailbreakBench dataset.
Abstract:Modern artificial intelligence (AI) systems are powered by foundation models. This paper presents a new set of foundation models, called Llama 3. It is a herd of language models that natively support multilinguality, coding, reasoning, and tool usage. Our largest model is a dense Transformer with 405B parameters and a context window of up to 128K tokens. This paper presents an extensive empirical evaluation of Llama 3. We find that Llama 3 delivers comparable quality to leading language models such as GPT-4 on a plethora of tasks. We publicly release Llama 3, including pre-trained and post-trained versions of the 405B parameter language model and our Llama Guard 3 model for input and output safety. The paper also presents the results of experiments in which we integrate image, video, and speech capabilities into Llama 3 via a compositional approach. We observe this approach performs competitively with the state-of-the-art on image, video, and speech recognition tasks. The resulting models are not yet being broadly released as they are still under development.
Abstract:To address issues of group-level fairness in machine learning, it is natural to adjust model parameters based on specific fairness objectives over a sensitive-attributed validation set. Such an adjustment procedure can be cast within a meta-learning framework. However, naive integration of fairness goals via meta-learning can cause hypergradient conflicts for subgroups, resulting in unstable convergence and compromising model performance and fairness. To navigate this issue, we frame the resolution of hypergradient conflicts as a multi-player cooperative bargaining game. We introduce a two-stage meta-learning framework in which the first stage involves the use of a Nash Bargaining Solution (NBS) to resolve hypergradient conflicts and steer the model toward the Pareto front, and the second stage optimizes with respect to specific fairness goals. Our method is supported by theoretical results, notably a proof of the NBS for gradient aggregation free from linear independence assumptions, a proof of Pareto improvement, and a proof of monotonic improvement in validation loss. We also show empirical effects across various fairness objectives in six key fairness datasets and two image classification tasks.
Abstract:Assessing performance in Natural Language Processing is becoming increasingly complex. One particular challenge is the potential for evaluation datasets to overlap with training data, either directly or indirectly, which can lead to skewed results and overestimation of model performance. As a consequence, human evaluation is gaining increasing interest as a means to assess the performance and reliability of models. One such method is the red teaming approach, which aims to generate edge cases where a model will produce critical errors. While this methodology is becoming standard practice for generative AI, its application to the realm of conditional AI remains largely unexplored. This paper presents the first study on human-based red teaming for Machine Translation (MT), marking a significant step towards understanding and improving the performance of translation models. We delve into both human-based red teaming and a study on automation, reporting lessons learned and providing recommendations for both translation models and red teaming drills. This pioneering work opens up new avenues for research and development in the field of MT.
Abstract:Artificial Intelligence (AI) has made its way into various scientific fields, providing astonishing improvements over existing algorithms for a wide variety of tasks. In recent years, there have been severe concerns over the trustworthiness of AI technologies. The scientific community has focused on the development of trustworthy AI algorithms. However, machine and deep learning algorithms, popular in the AI community today, depend heavily on the data used during their development. These learning algorithms identify patterns in the data, learning the behavioral objective. Any flaws in the data have the potential to translate directly into algorithms. In this study, we discuss the importance of Responsible Machine Learning Datasets and propose a framework to evaluate the datasets through a responsible rubric. While existing work focuses on the post-hoc evaluation of algorithms for their trustworthiness, we provide a framework that considers the data component separately to understand its role in the algorithm. We discuss responsible datasets through the lens of fairness, privacy, and regulatory compliance and provide recommendations for constructing future datasets. After surveying over 100 datasets, we use 60 datasets for analysis and demonstrate that none of these datasets is immune to issues of fairness, privacy preservation, and regulatory compliance. We provide modifications to the ``datasheets for datasets" with important additions for improved dataset documentation. With governments around the world regularizing data protection laws, the method for the creation of datasets in the scientific community requires revision. We believe this study is timely and relevant in today's era of AI.
Abstract:Textual prompt tuning has demonstrated significant performance improvements in adapting natural language processing models to a variety of downstream tasks by treating hand-engineered prompts as trainable parameters. Inspired by the success of textual prompting, several studies have investigated the efficacy of visual prompt tuning. In this work, we present Visual Prompt Adaptation (VPA), the first framework that generalizes visual prompting with test-time adaptation. VPA introduces a small number of learnable tokens, enabling fully test-time and storage-efficient adaptation without necessitating source-domain information. We examine our VPA design under diverse adaptation settings, encompassing single-image, batched-image, and pseudo-label adaptation. We evaluate VPA on multiple tasks, including out-of-distribution (OOD) generalization, corruption robustness, and domain adaptation. Experimental results reveal that VPA effectively enhances OOD generalization by 3.3% across various models, surpassing previous test-time approaches. Furthermore, we show that VPA improves corruption robustness by 6.5% compared to strong baselines. Finally, we demonstrate that VPA also boosts domain adaptation performance by relatively 5.2%. Our VPA also exhibits marked effectiveness in improving the robustness of zero-shot recognition for vision-language models.
Abstract:We release Code Llama, a family of large language models for code based on Llama 2 providing state-of-the-art performance among open models, infilling capabilities, support for large input contexts, and zero-shot instruction following ability for programming tasks. We provide multiple flavors to cover a wide range of applications: foundation models (Code Llama), Python specializations (Code Llama - Python), and instruction-following models (Code Llama - Instruct) with 7B, 13B and 34B parameters each. All models are trained on sequences of 16k tokens and show improvements on inputs with up to 100k tokens. 7B and 13B Code Llama and Code Llama - Instruct variants support infilling based on surrounding content. Code Llama reaches state-of-the-art performance among open models on several code benchmarks, with scores of up to 53% and 55% on HumanEval and MBPP, respectively. Notably, Code Llama - Python 7B outperforms Llama 2 70B on HumanEval and MBPP, and all our models outperform every other publicly available model on MultiPL-E. We release Code Llama under a permissive license that allows for both research and commercial use.
Abstract:In this work, we develop and release Llama 2, a collection of pretrained and fine-tuned large language models (LLMs) ranging in scale from 7 billion to 70 billion parameters. Our fine-tuned LLMs, called Llama 2-Chat, are optimized for dialogue use cases. Our models outperform open-source chat models on most benchmarks we tested, and based on our human evaluations for helpfulness and safety, may be a suitable substitute for closed-source models. We provide a detailed description of our approach to fine-tuning and safety improvements of Llama 2-Chat in order to enable the community to build on our work and contribute to the responsible development of LLMs.
Abstract:The advent of data-driven technology solutions is accompanied by an increasing concern with data privacy. This is of particular importance for human-centered image recognition tasks, such as pedestrian detection, re-identification, and tracking. To highlight the importance of privacy issues and motivate future research, we motivate and introduce the Pedestrian Dataset De-Identification (PDI) task. PDI evaluates the degree of de-identification and downstream task training performance for a given de-identification method. As a first baseline, we propose IncogniMOT, a two-stage full-body de-identification pipeline based on image synthesis via generative adversarial networks. The first stage replaces target pedestrians with synthetic identities. To improve downstream task performance, we then apply stage two, which blends and adapts the synthetic image parts into the data. To demonstrate the effectiveness of IncogniMOT, we generate a fully de-identified version of the MOT17 pedestrian tracking dataset and analyze its application as training data for pedestrian re-identification, detection, and tracking models. Furthermore, we show how our data is able to narrow the synthetic-to-real performance gap in a privacy-conscious manner.
Abstract:This paper introduces a new large consent-driven dataset aimed at assisting in the evaluation of algorithmic bias and robustness of computer vision and audio speech models in regards to 11 attributes that are self-provided or labeled by trained annotators. The dataset includes 26,467 videos of 5,567 unique paid participants, with an average of almost 5 videos per person, recorded in Brazil, India, Indonesia, Mexico, Vietnam, Philippines, and the USA, representing diverse demographic characteristics. The participants agreed for their data to be used in assessing fairness of AI models and provided self-reported age, gender, language/dialect, disability status, physical adornments, physical attributes and geo-location information, while trained annotators labeled apparent skin tone using the Fitzpatrick Skin Type and Monk Skin Tone scales, and voice timbre. Annotators also labeled for different recording setups and per-second activity annotations.