Jack
Abstract:Modern artificial intelligence (AI) systems are powered by foundation models. This paper presents a new set of foundation models, called Llama 3. It is a herd of language models that natively support multilinguality, coding, reasoning, and tool usage. Our largest model is a dense Transformer with 405B parameters and a context window of up to 128K tokens. This paper presents an extensive empirical evaluation of Llama 3. We find that Llama 3 delivers comparable quality to leading language models such as GPT-4 on a plethora of tasks. We publicly release Llama 3, including pre-trained and post-trained versions of the 405B parameter language model and our Llama Guard 3 model for input and output safety. The paper also presents the results of experiments in which we integrate image, video, and speech capabilities into Llama 3 via a compositional approach. We observe this approach performs competitively with the state-of-the-art on image, video, and speech recognition tasks. The resulting models are not yet being broadly released as they are still under development.
Abstract:Motivated by ride-sharing platforms' efforts to reduce their riders' wait times for a vehicle, this paper introduces a novel problem of placing vehicles to fulfill real-time pickup requests in a spatially and temporally changing environment. The real-time nature of this problem makes it fundamentally different from other placement and scheduling problems, as it requires not only real-time placement decisions but also handling real-time request dynamics, which are influenced by human mobility patterns. We use a dataset of ten million ride requests from four major U.S. cities to show that the requests exhibit significant self-similarity. We then propose distributed online learning algorithms for the real-time vehicle placement problem and bound their expected performance under this observed self-similarity.
Abstract:This paper focuses on modeling ride requests and their variations over location and time, based on analyzing extensive real-world data from a ride-sharing service. We introduce a graph model that captures the spatial and temporal variability of ride requests and the potentials for ride pooling. We discover these ride request graphs exhibit a well known property called densification power law often found in real graphs modelling human behaviors. We show the pattern of ride requests and the potential of ride pooling for a city can be characterized by the densification factor of the ride request graphs. Previous works have shown that it is possible to automatically generate synthetic versions of these graphs that exhibit a given densification factor. We present an algorithm for automatic generation of synthetic ride request graphs that match quite well the densification factor of ride request graphs from actual ride request data.