Jack
Abstract:LLMs often adopt an assertive language style also when making false claims. Such ``overconfident hallucinations'' mislead users and erode trust. Achieving the ability to express in language the actual degree of uncertainty around a claim is therefore of great importance. We find that ``verbal uncertainty'' is governed by a single linear feature in the representation space of LLMs, and show that this has only moderate correlation with the actual ``semantic uncertainty'' of the model. We apply this insight and show that (1) the mismatch between semantic and verbal uncertainty is a better predictor of hallucinations than semantic uncertainty alone and (2) we can intervene on verbal uncertainty at inference time and reduce hallucinations on short-form answers, achieving an average relative reduction of 32%.
Abstract:Modern artificial intelligence (AI) systems are powered by foundation models. This paper presents a new set of foundation models, called Llama 3. It is a herd of language models that natively support multilinguality, coding, reasoning, and tool usage. Our largest model is a dense Transformer with 405B parameters and a context window of up to 128K tokens. This paper presents an extensive empirical evaluation of Llama 3. We find that Llama 3 delivers comparable quality to leading language models such as GPT-4 on a plethora of tasks. We publicly release Llama 3, including pre-trained and post-trained versions of the 405B parameter language model and our Llama Guard 3 model for input and output safety. The paper also presents the results of experiments in which we integrate image, video, and speech capabilities into Llama 3 via a compositional approach. We observe this approach performs competitively with the state-of-the-art on image, video, and speech recognition tasks. The resulting models are not yet being broadly released as they are still under development.
Abstract:In this work, we develop and release Llama 2, a collection of pretrained and fine-tuned large language models (LLMs) ranging in scale from 7 billion to 70 billion parameters. Our fine-tuned LLMs, called Llama 2-Chat, are optimized for dialogue use cases. Our models outperform open-source chat models on most benchmarks we tested, and based on our human evaluations for helpfulness and safety, may be a suitable substitute for closed-source models. We provide a detailed description of our approach to fine-tuning and safety improvements of Llama 2-Chat in order to enable the community to build on our work and contribute to the responsible development of LLMs.
Abstract:A significant part of the largest Knowledge Graph today, the Linked Open Data cloud, consists of metadata about documents such as publications, news reports, and other media articles. While the widespread access to the document metadata is a tremendous advancement, it is yet not so easy to assign semantic annotations and organize the documents along semantic concepts. Providing semantic annotations like concepts in SKOS thesauri is a classical research topic, but typically it is conducted on the full-text of the documents. For the first time, we offer a systematic comparison of classification approaches to investigate how far semantic annotations can be conducted using just the metadata of the documents such as titles published as labels on the Linked Open Data cloud. We compare the classifications obtained from analyzing the documents' titles with semantic annotations obtained from analyzing the full-text. Apart from the prominent text classification baselines kNN and SVM, we also compare recent techniques of Learning to Rank and neural networks and revisit the traditional methods logistic regression, Rocchio, and Naive Bayes. The results show that across three of our four datasets, the performance of the classifications using only titles reaches over 90% of the quality compared to the classification performance when using the full-text. Thus, conducting document classification by just using the titles is a reasonable approach for automated semantic annotation and opens up new possibilities for enriching Knowledge Graphs.