Abstract:Graph Neural Networks (GNNs) are increasingly being used for a variety of ML applications on graph data. As graph data does not follow the independently and identically distributed (i.i.d) assumption, adversarial manipulations or incorrect data can propagate to other data points through message passing, deteriorating the model's performance. To allow model developers to remove the adverse effects of manipulated entities from a trained GNN, we study the recently formulated problem of Corrective Unlearning. We find that current graph unlearning methods fail to unlearn the effect of manipulations even when the whole manipulated set is known. We introduce a new graph unlearning method, Cognac, which can unlearn the effect of the manipulation set even when only 5% of it is identified. It recovers most of the performance of a strong oracle with fully corrected training data, even beating retraining from scratch without the deletion set while being 8x more efficient. We hope our work guides GNN developers in fixing harmful effects due to issues in real-world data post-training.
Abstract:The White House Executive Order on Artificial Intelligence highlights the risks of large language models (LLMs) empowering malicious actors in developing biological, cyber, and chemical weapons. To measure these risks of malicious use, government institutions and major AI labs are developing evaluations for hazardous capabilities in LLMs. However, current evaluations are private, preventing further research into mitigating risk. Furthermore, they focus on only a few, highly specific pathways for malicious use. To fill these gaps, we publicly release the Weapons of Mass Destruction Proxy (WMDP) benchmark, a dataset of 4,157 multiple-choice questions that serve as a proxy measurement of hazardous knowledge in biosecurity, cybersecurity, and chemical security. WMDP was developed by a consortium of academics and technical consultants, and was stringently filtered to eliminate sensitive information prior to public release. WMDP serves two roles: first, as an evaluation for hazardous knowledge in LLMs, and second, as a benchmark for unlearning methods to remove such hazardous knowledge. To guide progress on unlearning, we develop CUT, a state-of-the-art unlearning method based on controlling model representations. CUT reduces model performance on WMDP while maintaining general capabilities in areas such as biology and computer science, suggesting that unlearning may be a concrete path towards reducing malicious use from LLMs. We release our benchmark and code publicly at https://wmdp.ai
Abstract:Machine Learning models increasingly face data integrity challenges due to the use of large-scale training datasets drawn from the internet. We study what model developers can do if they detect that some data was manipulated or incorrect. Such manipulated data can cause adverse effects like vulnerability to backdoored samples, systematic biases, and in general, reduced accuracy on certain input domains. Often, all manipulated training samples are not known, and only a small, representative subset of the affected data is flagged. We formalize "Corrective Machine Unlearning" as the problem of mitigating the impact of data affected by unknown manipulations on a trained model, possibly knowing only a subset of impacted samples. We demonstrate that the problem of corrective unlearning has significantly different requirements from traditional privacy-oriented unlearning. We find most existing unlearning methods, including the gold-standard retraining-from-scratch, require most of the manipulated data to be identified for effective corrective unlearning. However, one approach, SSD, achieves limited success in unlearning adverse effects with just a small portion of the manipulated samples, showing the tractability of this setting. We hope our work spurs research towards developing better methods for corrective unlearning and offers practitioners a new strategy to handle data integrity challenges arising from web-scale training.
Abstract:In this paper, we identify and characterize the emerging area of representation engineering (RepE), an approach to enhancing the transparency of AI systems that draws on insights from cognitive neuroscience. RepE places population-level representations, rather than neurons or circuits, at the center of analysis, equipping us with novel methods for monitoring and manipulating high-level cognitive phenomena in deep neural networks (DNNs). We provide baselines and an initial analysis of RepE techniques, showing that they offer simple yet effective solutions for improving our understanding and control of large language models. We showcase how these methods can provide traction on a wide range of safety-relevant problems, including honesty, harmlessness, power-seeking, and more, demonstrating the promise of top-down transparency research. We hope that this work catalyzes further exploration of RepE and fosters advancements in the transparency and safety of AI systems.
Abstract:We study the problem of fair sequential decision making given voter preferences. In each round, a decision rule must choose a decision from a set of alternatives where each voter reports which of these alternatives they approve. Instead of going with the most popular choice in each round, we aim for proportional representation. We formalize this aim using axioms based on Proportional Justified Representation (PJR), which were proposed in the literature on multi-winner voting and were recently adapted to multi-issue decision making. The axioms require that every group of $\alpha\%$ of the voters, if it agrees in every round (i.e., approves a common alternative), then those voters must approve at least $\alpha\%$ of the decisions. A stronger version of the axioms requires that every group of $\alpha\%$ of the voters that agrees in a $\beta$ fraction of rounds must approve $\beta\cdot\alpha\%$ of the decisions. We show that three attractive voting rules satisfy axioms of this style. One of them (Sequential Phragm\'en) makes its decisions online, and the other two satisfy strengthened versions of the axioms but make decisions semi-online (Method of Equal Shares) or fully offline (Proportional Approval Voting). The first two are polynomial-time computable, and the latter is based on an NP-hard optimization, but it admits a polynomial-time local search algorithm that satisfies the same axiomatic properties. We present empirical results about the performance of these rules based on synthetic data and U.S. political elections. We also run experiments where votes are cast by preference models trained on user responses from the moral machine dataset about ethical dilemmas.
Abstract:Powerful artificial intelligence poses an existential threat if the AI decides to drastically change the world in pursuit of its goals. The hope of low-impact artificial intelligence is to incentivize AI to not do that just because this causes a large impact in the world. In this work, we first review the concept of low-impact agency and previous proposals to approach the problem, and then propose future research directions in the topic, with the goal to ensure low-impactedness is useful in making AI safe.
Abstract:Existing works in inexact machine unlearning focus on achieving indistinguishability from models retrained after removing the deletion set. We argue that indistinguishability is unnecessary, infeasible to measure, and its practical relaxations can be insufficient. We redefine the goal of unlearning as forgetting all information specific to the deletion set while maintaining high utility and resource efficiency. Motivated by the practical application of removing mislabelled and biased data from models, we introduce a novel test to measure the degree of forgetting called Interclass Confusion (IC). It allows us to analyze two aspects of forgetting: (i) memorization and (ii) property generalization. Despite being a black-box test, IC can investigate whether information from the deletion set was erased until the early layers of the network. We empirically show that two simple unlearning methods, exact-unlearning and catastrophic-forgetting the final k layers of a network, scale well to large deletion sets unlike prior unlearning methods. k controls the forgetting-efficiency tradeoff at similar utility. Overall, we believe our formulation of unlearning and the IC test will guide the design of better unlearning algorithms.
Abstract:This paper describes an approach used to generate new translations using raw bilingual dictionaries as part of the 4th Task Inference Across Dictionaries (TIAD 2021) shared task. We propose Augmented Cycle Density (ACD) as a framework that combines insights from two state of the art methods that require no sense information and parallel corpora: Cycle Density (CD) and One Time Inverse Consultation (OTIC). The task results show that across 3 unseen language pairs, ACD's predictions, has more than double (74%) the coverage of OTIC at almost the same precision (76%). ACD combines CD's scalability - leveraging rich multilingual graphs for better predictions, and OTIC's data efficiency - producing good results with the minimum possible resource of one pivot language.