Abstract:The past few years have produced a series of spectacular advances in the decoding of speech from brain activity. The engine of these advances has been the acquisition of labelled data, with increasingly large datasets acquired from single subjects. However, participants exhibit anatomical and other individual differences, and datasets use varied scanners and task designs. As a result, prior work has struggled to leverage data from multiple subjects, multiple datasets, multiple tasks, and unlabelled datasets. In turn, the field has not benefited from the rapidly growing number of open neural data repositories to exploit large-scale data and deep learning. To address this, we develop an initial set of neuroscience-inspired self-supervised objectives, together with a neural architecture, for representation learning from heterogeneous and unlabelled neural recordings. Experimental results show that representations learned with these objectives generalise across subjects, datasets, and tasks, and are also learned faster than using only labelled data. In addition, we set new benchmarks for two foundational speech decoding tasks. Taken together, these methods now unlock the potential for training speech decoding models with orders of magnitude more existing data.
Abstract:Existing communication methods for multi-agent reinforcement learning (MARL) in cooperative multi-robot problems are almost exclusively task-specific, training new communication strategies for each unique task. We address this inefficiency by introducing a communication strategy applicable to any task within a given environment. We pre-train the communication strategy without task-specific reward guidance in a self-supervised manner using a set autoencoder. Our objective is to learn a fixed-size latent Markov state from a variable number of agent observations. Under mild assumptions, we prove that policies using our latent representations are guaranteed to converge, and upper bound the value error introduced by our Markov state approximation. Our method enables seamless adaptation to novel tasks without fine-tuning the communication strategy, gracefully supports scaling to more agents than present during training, and detects out-of-distribution events in an environment. Empirical results on diverse MARL scenarios validate the effectiveness of our approach, surpassing task-specific communication strategies in unseen tasks. Our implementation of this work is available at https://github.com/proroklab/task-agnostic-comms.
Abstract:Most investigations into double descent have focused on supervised models while the few works studying self-supervised settings find a surprising lack of the phenomenon. These results imply that double descent may not exist in self-supervised models. We show this empirically using a standard and linear autoencoder, two previously unstudied settings. The test loss is found to have either a classical U-shape or to monotonically decrease instead of exhibiting a double-descent curve. We hope that further work on this will help elucidate the theoretical underpinnings of this phenomenon.
Abstract:Learning models that execute algorithms can enable us to address a key problem in deep learning: generalizing to out-of-distribution data. However, neural networks are currently unable to execute recursive algorithms because they do not have arbitrarily large memory to store and recall state. To address this, we (1) propose a way to augment graph neural networks (GNNs) with a stack, and (2) develop an approach for capturing intermediate algorithm trajectories that improves algorithmic alignment with recursive algorithms over previous methods. The stack allows the network to learn to store and recall a portion of the state of the network at a particular time, analogous to the action of a call stack in a recursive algorithm. This augmentation permits the network to reason recursively. We empirically demonstrate that our proposals significantly improve generalization to larger input graphs over prior work on depth-first search (DFS).