Abstract:Large language models (LLMs) often struggle with processing extensive input contexts, which can lead to redundant, inaccurate, or incoherent summaries. Recent methods have used unstructured memory to incrementally process these contexts, but they still suffer from information overload due to the volume of unstructured data handled. In our study, we introduce structured knowledge representations ($GU_{json}$), which significantly improve summarization performance by 40% and 14% across two public datasets. Most notably, we propose the Chain-of-Key strategy ($CoK_{json}$) that dynamically updates or augments these representations with new information, rather than recreating the structured memory for each new source. This method further enhances performance by 7% and 4% on the datasets.
Abstract:No existing dataset adequately tests how well language models can incrementally update entity summaries - a crucial ability as these models rapidly advance. The Incremental Entity Summarization (IES) task is vital for maintaining accurate, up-to-date knowledge. To address this, we introduce SUMIE, a fully synthetic dataset designed to expose real-world IES challenges. This dataset effectively highlights problems like incorrect entity association and incomplete information presentation. Unlike common synthetic datasets, ours captures the complexity and nuances found in real-world data. We generate informative and diverse attributes, summaries, and unstructured paragraphs in sequence, ensuring high quality. The alignment between generated summaries and paragraphs exceeds 96%, confirming the dataset's quality. Extensive experiments demonstrate the dataset's difficulty - state-of-the-art LLMs struggle to update summaries with an F1 higher than 80.4%. We will open source the benchmark and the evaluation metrics to help the community make progress on IES tasks.