Topic:Curved Text Detection
What is Curved Text Detection? Curved text detection is the process of identifying and localizing text that is curved or non-linear in images.
Papers and Code
Nov 25, 2022
Abstract:This paper explores the multi-scale aggregation strategy for scene text detection in natural images. We present the Aggregated Text TRansformer(ATTR), which is designed to represent texts in scene images with a multi-scale self-attention mechanism. Starting from the image pyramid with multiple resolutions, the features are first extracted at different scales with shared weight and then fed into an encoder-decoder architecture of Transformer. The multi-scale image representations are robust and contain rich information on text contents of various sizes. The text Transformer aggregates these features to learn the interaction across different scales and improve text representation. The proposed method detects scene texts by representing each text instance as an individual binary mask, which is tolerant of curve texts and regions with dense instances. Extensive experiments on public scene text detection datasets demonstrate the effectiveness of the proposed framework.
Via
Mar 08, 2023
Abstract:The ability to automatically identify industry sector coverage in articles on legal developments, or any kind of news articles for that matter, can bring plentiful of benefits both to the readers and the content creators themselves. By having articles tagged based on industry coverage, readers from all around the world would be able to get to legal news that are specific to their region and professional industry. Simultaneously, writers would benefit from understanding which industries potentially lack coverage or which industries readers are currently mostly interested in and thus, they would focus their writing efforts towards more inclusive and relevant legal news coverage. In this paper, a Machine Learning-powered industry analysis approach which combined Natural Language Processing (NLP) with Statistical and Machine Learning (ML) techniques was investigated. A dataset consisting of over 1,700 annotated legal articles was created for the identification of six industry sectors. Text and legal based features were extracted from the text. Both traditional ML methods (e.g. gradient boosting machine algorithms, and decision-tree based algorithms) and deep neural network (e.g. transformer models) were applied for performance comparison of predictive models. The system achieved promising results with area under the receiver operating characteristic curve scores above 0.90 and F-scores above 0.81 with respect to the six industry sectors. The experimental results show that the suggested automated industry analysis which employs ML techniques allows the processing of large collections of text data in an easy, efficient, and scalable way. Traditional ML methods perform better than deep neural networks when only a small and domain-specific training data is available for the study.
* 26 pages, 5 figures, 3 tables. Paper was presented at 'Classification
and Data Science in the Digital Age', 17th conference of the International
Federation of Classification Societies (IFCS2022), Porto, Portugal,
https://ifcs2022.fep.up.pt/
Via
Sep 07, 2022
Abstract:Irregular-shaped texts bring challenges to Scene Text Detection (STD). Although existing contour point sequence-based approaches achieve comparable performances, they fail to cover some highly curved ribbon-like text lines. It leads to limited text fitting ability and STD technique application. Considering the above problem, we combine text geometric characteristics and bionics to design a natural leaf vein-based text representation method (LVT). Concretely, it is found that leaf vein is a generally directed graph, which can easily cover various geometries. Inspired by it, we treat text contour as leaf margin and represent it through main, lateral, and thin veins. We further construct a detection framework based on LVT, namely LeafText. In the text reconstruction stage, LeafText simulates the leaf growth process to rebuild text contour. It grows main vein in Cartesian coordinates to locate text roughly at first. Then, lateral and thin veins are generated along the main vein growth direction in polar coordinates. They are responsible for generating coarse contour and refining it, respectively. Considering the deep dependency of lateral and thin veins on main vein, the Multi-Oriented Smoother (MOS) is proposed to enhance the robustness of main vein to ensure a reliable detection result. Additionally, we propose a global incentive loss to accelerate the predictions of lateral and thin veins. Ablation experiments demonstrate LVT is able to depict arbitrary-shaped texts precisely and verify the effectiveness of MOS and global incentive loss. Comparisons show that LeafText is superior to existing state-of-the-art (SOTA) methods on MSRA-TD500, CTW1500, Total-Text, and ICDAR2015 datasets.
Via
Jul 10, 2022
Abstract:Recently, Transformer-based methods, which predict polygon points or Bezier curve control points to localize texts, are quite popular in scene text detection. However, the used point label form implies the reading order of humans, which affects the robustness of Transformer model. As for the model architecture, the formulation of queries used in decoder has not been fully explored by previous methods. In this paper, we propose a concise dynamic point scene text detection Transformer network termed DPText-DETR, which directly uses point coordinates as queries and dynamically updates them between decoder layers. We point out a simple yet effective positional point label form to tackle the side effect of the original one. Moreover, an Enhanced Factorized Self-Attention module is designed to explicitly model the circular shape of polygon point sequences beyond non-local attention. Extensive experiments prove the training efficiency, robustness, and state-of-the-art performance on various arbitrary shape scene text benchmarks. Beyond detector, we observe that existing end-to-end spotters struggle to recognize inverse-like texts. To evaluate their performance objectively and facilitate future research, we propose an Inverse-Text test set containing 500 manually labeled images. The code and Inverse-Text test set will be available at https://github.com/ymy-k/DPText-DETR.
Via
Jul 29, 2022
Abstract:Handwritten Chinese text recognition (HCTR) has been an active research topic for decades. However, most previous studies solely focus on the recognition of cropped text line images, ignoring the error caused by text line detection in real-world applications. Although some approaches aimed at page-level text recognition have been proposed in recent years, they either are limited to simple layouts or require very detailed annotations including expensive line-level and even character-level bounding boxes. To this end, we propose PageNet for end-to-end weakly supervised page-level HCTR. PageNet detects and recognizes characters and predicts the reading order between them, which is more robust and flexible when dealing with complex layouts including multi-directional and curved text lines. Utilizing the proposed weakly supervised learning framework, PageNet requires only transcripts to be annotated for real data; however, it can still output detection and recognition results at both the character and line levels, avoiding the labor and cost of labeling bounding boxes of characters and text lines. Extensive experiments conducted on five datasets demonstrate the superiority of PageNet over existing weakly supervised and fully supervised page-level methods. These experimental results may spark further research beyond the realms of existing methods based on connectionist temporal classification or attention. The source code is available at https://github.com/shannanyinxiang/PageNet.
* Accepted to appear in International Journal of Computer Vision (IJCV)
Via
Jun 27, 2022
Abstract:Arbitrary-shaped scene text detection is a challenging task due to the variety of text changes in font, size, color, and orientation. Most existing regression based methods resort to regress the masks or contour points of text regions to model the text instances. However, regressing the complete masks requires high training complexity, and contour points are not sufficient to capture the details of highly curved texts. To tackle the above limitations, we propose a novel light-weight anchor-free text detection framework called TextDCT, which adopts the discrete cosine transform (DCT) to encode the text masks as compact vectors. Further, considering the imbalanced number of training samples among pyramid layers, we only employ a single-level head for top-down prediction. To model the multi-scale texts in a single-level head, we introduce a novel positive sampling strategy by treating the shrunk text region as positive samples, and design a feature awareness module (FAM) for spatial-awareness and scale-awareness by fusing rich contextual information and focusing on more significant features. Moreover, we propose a segmented non-maximum suppression (S-NMS) method that can filter low-quality mask regressions. Extensive experiments are conducted on four challenging datasets, which demonstrate our TextDCT obtains competitive performance on both accuracy and efficiency. Specifically, TextDCT achieves F-measure of 85.1 at 17.2 frames per second (FPS) and F-measure of 84.9 at 15.1 FPS for CTW1500 and Total-Text datasets, respectively.
* This paper has been accepted by IEEE Transactions on Multimedia
Via
May 11, 2022
Abstract:Arbitrary shape text detection is a challenging task due to its complexity and variety, e.g, various scales, random rotations, and curve shapes. In this paper, we propose an arbitrary shape text detector with a boundary transformer, which can accurately and directly locate text boundaries without any post-processing. Our method mainly consists of a boundary proposal module and an iteratively optimized boundary transformer module. The boundary proposal module consisting of multi-layer dilated convolutions will compute important prior information (including classification map, distance field, and direction field) for generating coarse boundary proposals meanwhile guiding the optimization of boundary transformer. The boundary transformer module adopts an encoder-decoder structure, in which the encoder is constructed by multi-layer transformer blocks with residual connection while the decoder is a simple multi-layer perceptron network (MLP). Under the guidance of prior information, the boundary transformer module will gradually refine the coarse boundary proposals via boundary deformation in an iterative manner. Furthermore, we propose a novel boundary energy loss (BEL) which introduces an energy minimization constraint and an energy monotonically decreasing constraint for every boundary optimization step. Extensive experiments on publicly available and challenging datasets demonstrate the state-of-the-art performance and promising efficiency of our method.
* 13 pages, 12 figures.It is not the final version,just a preview.
arXiv admin note: text overlap with arXiv:2107.12664
Via
Jul 11, 2022
Abstract:Recognizing irregular texts has been a challenging topic in text recognition. To encourage research on this topic, we provide a novel comic onomatopoeia dataset (COO), which consists of onomatopoeia texts in Japanese comics. COO has many arbitrary texts, such as extremely curved, partially shrunk texts, or arbitrarily placed texts. Furthermore, some texts are separated into several parts. Each part is a truncated text and is not meaningful by itself. These parts should be linked to represent the intended meaning. Thus, we propose a novel task that predicts the link between truncated texts. We conduct three tasks to detect the onomatopoeia region and capture its intended meaning: text detection, text recognition, and link prediction. Through extensive experiments, we analyze the characteristics of the COO. Our data and code are available at \url{https://github.com/ku21fan/COO-Comic-Onomatopoeia}.
* Accepted at ECCV 2022. 25 pages, 16 figures
Via
Apr 05, 2022
Abstract:In this paper, we present TExt Spotting TRansformers (TESTR), a generic end-to-end text spotting framework using Transformers for text detection and recognition in the wild. TESTR builds upon a single encoder and dual decoders for the joint text-box control point regression and character recognition. Other than most existing literature, our method is free from Region-of-Interest operations and heuristics-driven post-processing procedures; TESTR is particularly effective when dealing with curved text-boxes where special cares are needed for the adaptation of the traditional bounding-box representations. We show our canonical representation of control points suitable for text instances in both Bezier curve and polygon annotations. In addition, we design a bounding-box guided polygon detection (box-to-polygon) process. Experiments on curved and arbitrarily shaped datasets demonstrate state-of-the-art performances of the proposed TESTR algorithm.
* Accepted to CVPR 2022
Via
Feb 22, 2022
Abstract:Recent text detection frameworks require several handcrafted components such as anchor generation, non-maximum suppression (NMS), or multiple processing stages (e.g. label generation) to detect arbitrarily shaped text images. In contrast, we propose an end-to-end trainable architecture based on Detection using Transformers (DETR), that outperforms previous state-of-the-art methods in arbitrary-shaped text detection. At its core, our proposed method leverages a bounding box loss function that accurately measures the arbitrary detected text regions' changes in scale and aspect ratio. This is possible due to a hybrid shape representation made from Bezier curves, that are further split into piece-wise polygons. The proposed loss function is then a combination of a generalized-split-intersection-over-union loss defined over the piece-wise polygons and regularized by a Smooth-$\ln$ regression over the Bezier curve's control points. We evaluate our proposed model using Total-Text and CTW-1500 datasets for curved text, and MSRA-TD500 and ICDAR15 datasets for multi-oriented text, and show that the proposed method outperforms the previous state-of-the-art methods in arbitrary-shape text detection tasks.
Via