Abstract:The Privacy Preserving Federated Learning Document VQA (PFL-DocVQA) competition challenged the community to develop provably private and communication-efficient solutions in a federated setting for a real-life use case: invoice processing. The competition introduced a dataset of real invoice documents, along with associated questions and answers requiring information extraction and reasoning over the document images. Thereby, it brings together researchers and expertise from the document analysis, privacy, and federated learning communities. Participants fine-tuned a pre-trained, state-of-the-art Document Visual Question Answering model provided by the organizers for this new domain, mimicking a typical federated invoice processing setup. The base model is a multi-modal generative language model, and sensitive information could be exposed through either the visual or textual input modality. Participants proposed elegant solutions to reduce communication costs while maintaining a minimum utility threshold in track 1 and to protect all information from each document provider using differential privacy in track 2. The competition served as a new testbed for developing and testing private federated learning methods, simultaneously raising awareness about privacy within the document image analysis and recognition community. Ultimately, the competition analysis provides best practices and recommendations for successfully running privacy-focused federated learning challenges in the future.
Abstract:The comic domain is rapidly advancing with the development of single- and multi-page analysis and synthesis models. Recent benchmarks and datasets have been introduced to support and assess models' capabilities in tasks such as detection (panels, characters, text), linking (character re-identification and speaker identification), and analysis of comic elements (e.g., dialog transcription). However, to provide a comprehensive understanding of the storyline, a model must not only extract elements but also understand their relationships and generate highly informative captions. In this work, we propose a pipeline that leverages Vision-Language Models (VLMs) to obtain dense, grounded captions. To construct our pipeline, we introduce an attribute-retaining metric that assesses whether all important attributes are identified in the caption. Additionally, we created a densely annotated test set to fairly evaluate open-source VLMs and select the best captioning model according to our metric. Our pipeline generates dense captions with bounding boxes that are quantitatively and qualitatively superior to those produced by specifically trained models, without requiring any additional training. Using this pipeline, we annotated over 2 million panels across 13,000 books, which will be available on the project page https://github.com/emanuelevivoli/ComiCap.
Abstract:Vision-language models have recently evolved into versatile systems capable of high performance across a range of tasks, such as document understanding, visual question answering, and grounding, often in zero-shot settings. Comics Understanding, a complex and multifaceted field, stands to greatly benefit from these advances. Comics, as a medium, combine rich visual and textual narratives, challenging AI models with tasks that span image classification, object detection, instance segmentation, and deeper narrative comprehension through sequential panels. However, the unique structure of comics -- characterized by creative variations in style, reading order, and non-linear storytelling -- presents a set of challenges distinct from those in other visual-language domains. In this survey, we present a comprehensive review of Comics Understanding from both dataset and task perspectives. Our contributions are fivefold: (1) We analyze the structure of the comics medium, detailing its distinctive compositional elements; (2) We survey the widely used datasets and tasks in comics research, emphasizing their role in advancing the field; (3) We introduce the Layer of Comics Understanding (LoCU) framework, a novel taxonomy that redefines vision-language tasks within comics and lays the foundation for future work; (4) We provide a detailed review and categorization of existing methods following the LoCU framework; (5) Finally, we highlight current research challenges and propose directions for future exploration, particularly in the context of vision-language models applied to comics. This survey is the first to propose a task-oriented framework for comics intelligence and aims to guide future research by addressing critical gaps in data availability and task definition. A project associated with this survey is available at https://github.com/emanuelevivoli/awesome-comics-understanding.
Abstract:Fonts are integral to creative endeavors, design processes, and artistic productions. The appropriate selection of a font can significantly enhance artwork and endow advertisements with a higher level of expressivity. Despite the availability of numerous diverse font designs online, traditional retrieval-based methods for font selection are increasingly being supplanted by generation-based approaches. These newer methods offer enhanced flexibility, catering to specific user preferences and capturing unique stylistic impressions. However, current impression font techniques based on Generative Adversarial Networks (GANs) necessitate the utilization of multiple auxiliary losses to provide guidance during generation. Furthermore, these methods commonly employ weighted summation for the fusion of impression-related keywords. This leads to generic vectors with the addition of more impression keywords, ultimately lacking in detail generation capacity. In this paper, we introduce a diffusion-based method, termed \ourmethod, to generate fonts that vividly embody specific impressions, utilizing an input consisting of a single letter and a set of descriptive impression keywords. The core innovation of \ourmethod lies in the development of dual cross-attention modules, which process the characteristics of the letters and impression keywords independently but synergistically, ensuring effective integration of both types of information. Our experimental results, conducted on the MyFonts dataset, affirm that this method is capable of producing realistic, vibrant, and high-fidelity fonts that are closely aligned with user specifications. This confirms the potential of our approach to revolutionize font generation by accommodating a broad spectrum of user-driven design requirements. Our code is publicly available at \url{https://github.com/leitro/GRIF-DM}.
Abstract:We address the problem of detecting and mapping all books in a collection of images to entries in a given book catalogue. Instead of performing independent retrieval for each book detected, we treat the image-text mapping problem as a many-to-many matching process, looking for the best overall match between the two sets. We combine a state-of-the-art segmentation method (SAM) to detect book spines and extract book information using a commercial OCR. We then propose a two-stage approach for text-image matching, where CLIP embeddings are used first for fast matching, followed by a second slower stage to refine the matching, employing either the Hungarian Algorithm or a BERT-based model trained to cope with noisy OCR input and partial text matches. To evaluate our approach, we publish a new dataset of annotated bookshelf images that covers the whole book collection of a public library in Spain. In addition, we provide two target lists of book metadata, a closed-set of 15k book titles that corresponds to the known library inventory, and an open-set of 2.3M book titles to simulate an open-world scenario. We report results on two settings, on one hand on a matching-only task, where the book segments and OCR is given and the objective is to perform many-to-many matching against the target lists, and a combined detection and matching task, where books must be first detected and recognised before they are matched to the target list entries. We show that both the Hungarian Matching and the proposed BERT-based model outperform a fuzzy string matching baseline, and we highlight inherent limitations of the matching algorithms as the target increases in size, and when either of the two sets (detected books or target book list) is incomplete. The dataset and code are available at https://github.com/llabres/library-dataset
Abstract:The comic domain is rapidly advancing with the development of single-page analysis and synthesis models. However, evaluation metrics and datasets lag behind, often limited to small-scale or single-style test sets. We introduce a novel benchmark, CoMix, designed to evaluate the multi-task capabilities of models in comic analysis. Unlike existing benchmarks that focus on isolated tasks such as object detection or text recognition, CoMix addresses a broader range of tasks including object detection, speaker identification, character re-identification, reading order, and multi-modal reasoning tasks like character naming and dialogue generation. Our benchmark comprises three existing datasets with expanded annotations to support multi-task evaluation. To mitigate the over-representation of manga-style data, we have incorporated a new dataset of carefully selected American comic-style books, thereby enriching the diversity of comic styles. CoMix is designed to assess pre-trained models in zero-shot and limited fine-tuning settings, probing their transfer capabilities across different comic styles and tasks. The validation split of the benchmark is publicly available for research purposes, and an evaluation server for the held-out test split is also provided. Comparative results between human performance and state-of-the-art models reveal a significant performance gap, highlighting substantial opportunities for advancements in comic understanding. The dataset, baseline models, and code are accessible at the repository link. This initiative sets a new standard for comprehensive comic analysis, providing the community with a common benchmark for evaluation on a large and varied set.
Abstract:Comics, as a medium, uniquely combine text and images in styles often distinct from real-world visuals. For the past three decades, computational research on comics has evolved from basic object detection to more sophisticated tasks. However, the field faces persistent challenges such as small datasets, inconsistent annotations, inaccessible model weights, and results that cannot be directly compared due to varying train/test splits and metrics. To address these issues, we aim to standardize annotations across datasets, introduce a variety of comic styles into the datasets, and establish benchmark results with clear, replicable settings. Our proposed Comics Datasets Framework standardizes dataset annotations into a common format and addresses the overrepresentation of manga by introducing Comics100, a curated collection of 100 books from the Digital Comics Museum, annotated for detection in our uniform format. We have benchmarked a variety of detection architectures using the Comics Datasets Framework. All related code, model weights, and detailed evaluation processes are available at https://github.com/emanuelevivoli/cdf, ensuring transparency and facilitating replication. This initiative is a significant advancement towards improving object detection in comics, laying the groundwork for more complex computational tasks dependent on precise object recognition.
Abstract:An important handicap of document analysis research is that documents tend to be copyrighted or contain private information, which prohibits their open publication and the creation of centralised, large-scale document datasets. Instead, documents are scattered in private data silos, making extensive training over heterogeneous data a tedious task. In this work, we explore the use of a federated learning (FL) scheme as a way to train a shared model on decentralised private document data. We focus on the problem of Document VQA, a task particularly suited to this approach, as the type of reasoning capabilities required from the model can be quite different in diverse domains. Enabling training over heterogeneous document datasets can thus substantially enrich DocVQA models. We assemble existing DocVQA datasets from diverse domains to reflect the data heterogeneity in real-world applications. We explore the self-pretraining technique in this multi-modal setting, where the same data is used for both pretraining and finetuning, making it relevant for privacy preservation. We further propose combining self-pretraining with a Federated DocVQA training method using centralized adaptive optimization that outperforms the FedAvg baseline. With extensive experiments, we also present a multi-faceted analysis on training DocVQA models with FL, which provides insights for future research on this task. We show that our pretraining strategies can effectively learn and scale up under federated training with diverse DocVQA datasets and tuning hyperparameters is essential for practical document tasks under federation.
Abstract:Documents are 2-dimensional carriers of written communication, and as such their interpretation requires a multi-modal approach where textual and visual information are efficiently combined. Document Visual Question Answering (Document VQA), due to this multi-modal nature, has garnered significant interest from both the document understanding and natural language processing communities. The state-of-the-art single-page Document VQA methods show impressive performance, yet in multi-page scenarios, these methods struggle. They have to concatenate all pages into one large page for processing, demanding substantial GPU resources, even for evaluation. In this work, we propose a novel method and efficient training strategy for multi-page Document VQA tasks. In particular, we employ a visual-only document representation, leveraging the encoder from a document understanding model, Pix2Struct. Our approach utilizes a self-attention scoring mechanism to generate relevance scores for each document page, enabling the retrieval of pertinent pages. This adaptation allows us to extend single-page Document VQA models to multi-page scenarios without constraints on the number of pages during evaluation, all with minimal demand for GPU resources. Our extensive experiments demonstrate not only achieving state-of-the-art performance without the need for Optical Character Recognition (OCR), but also sustained performance in scenarios extending to documents of nearly 800 pages compared to a maximum of 20 pages in the MP-DocVQA dataset. Our code is publicly available at \url{https://github.com/leitro/SelfAttnScoring-MPDocVQA}.
Abstract:Document understanding models have recently demonstrated remarkable performance by leveraging extensive collections of user documents. However, since documents often contain large amounts of personal data, their usage can pose a threat to user privacy and weaken the bonds of trust between humans and AI services. In response to these concerns, legislation advocating ``the right to be forgotten" has recently been proposed, allowing users to request the removal of private information from computer systems and neural network models. A novel approach, known as machine unlearning, has emerged to make AI models forget about a particular class of data. In our research, we explore machine unlearning for document classification problems, representing, to the best of our knowledge, the first investigation into this area. Specifically, we consider a realistic scenario where a remote server houses a well-trained model and possesses only a small portion of training data. This setup is designed for efficient forgetting manipulation. This work represents a pioneering step towards the development of machine unlearning methods aimed at addressing privacy concerns in document analysis applications. Our code is publicly available at \url{https://github.com/leitro/MachineUnlearning-DocClassification}.