Abstract:Automatic detection and severity assessment of dysarthria are crucial for delivering targeted therapeutic interventions to patients. While most existing research focuses primarily on speech modality, this study introduces a novel approach that leverages both speech and text modalities. By employing cross-attention mechanism, our method learns the acoustic and linguistic similarities between speech and text representations. This approach assesses specifically the pronunciation deviations across different severity levels, thereby enhancing the accuracy of dysarthric detection and severity assessment. All the experiments have been performed using UA-Speech dysarthric database. Improved accuracies of 99.53% and 93.20% in detection, and 98.12% and 51.97% for severity assessment have been achieved when speaker-dependent and speaker-independent, unseen and seen words settings are used. These findings suggest that by integrating text information, which provides a reference linguistic knowledge, a more robust framework has been developed for dysarthric detection and assessment, thereby potentially leading to more effective diagnoses.
Abstract:Identifying user-defined keywords is crucial for personalizing interactions with smart devices. Previous approaches of user-defined keyword spotting (UDKWS) have relied on short-term spectral features such as mel frequency cepstral coefficients (MFCC) to detect the spoken keyword. However, these features may face challenges in accurately identifying closely related pronunciation of audio-text pairs, due to their limited capability in capturing the temporal dynamics of the speech signal. To address this challenge, we propose to use shifted delta coefficients (SDC) which help in capturing pronunciation variability (transition between connecting phonemes) by incorporating long-term temporal information. The performance of the SDC feature is compared with various baseline features across four different datasets using a cross-attention based end-to-end system. Additionally, various configurations of SDC are explored to find the suitable temporal context for the UDKWS task. The experimental results reveal that the SDC feature outperforms the MFCC baseline feature, exhibiting an improvement of 8.32% in area under the curve (AUC) and 8.69% in terms of equal error rate (EER) on the challenging Libriphrase-hard dataset. Moreover, the proposed approach demonstrated superior performance when compared to state-of-the-art UDKWS techniques.
Abstract:Identifying keywords in an open-vocabulary context is crucial for personalizing interactions with smart devices. Previous approaches to open vocabulary keyword spotting dependon a shared embedding space created by audio and text encoders. However, these approaches suffer from heterogeneous modality representations (i.e., audio-text mismatch). To address this issue, our proposed framework leverages knowledge acquired from a pre-trained text-to-speech (TTS) system. This knowledge transfer allows for the incorporation of awareness of audio projections into the text representations derived from the text encoder. The performance of the proposed approach is compared with various baseline methods across four different datasets. The robustness of our proposed model is evaluated by assessing its performance across different word lengths and in an Out-of-Vocabulary (OOV) scenario. Additionally, the effectiveness of transfer learning from the TTS system is investigated by analyzing its different intermediate representations. The experimental results indicate that, in the challenging LibriPhrase Hard dataset, the proposed approach outperformed the cross-modality correspondence detector (CMCD) method by a significant improvement of 8.22% in area under the curve (AUC) and 12.56% in equal error rate (EER).