Topic:Video Summarization
What is Video Summarization? Video summarization is the process of creating a concise representation of a video that contains the most important information.
Papers and Code
Apr 15, 2025
Abstract:The exponential increase in video content poses significant challenges in terms of efficient navigation, search, and retrieval, thus requiring advanced video summarization techniques. Existing video summarization methods, which heavily rely on visual features and temporal dynamics, often fail to capture the semantics of video content, resulting in incomplete or incoherent summaries. To tackle the challenge, we propose a new video summarization framework that leverages the capabilities of recent Large Language Models (LLMs), expecting that the knowledge learned from massive data enables LLMs to evaluate video frames in a manner that better aligns with diverse semantics and human judgments, effectively addressing the inherent subjectivity in defining keyframes. Our method, dubbed LLM-based Video Summarization (LLMVS), translates video frames into a sequence of captions using a Muti-modal Large Language Model (M-LLM) and then assesses the importance of each frame using an LLM, based on the captions in its local context. These local importance scores are refined through a global attention mechanism in the entire context of video captions, ensuring that our summaries effectively reflect both the details and the overarching narrative. Our experimental results demonstrate the superiority of the proposed method over existing ones in standard benchmarks, highlighting the potential of LLMs in the processing of multimedia content.
* Accepted to CVPR 2025
Via

Apr 15, 2025
Abstract:This report provides a comprehensive overview of the 4th Pixel-level Video Understanding in the Wild (PVUW) Challenge, held in conjunction with CVPR 2025. It summarizes the challenge outcomes, participating methodologies, and future research directions. The challenge features two tracks: MOSE, which focuses on complex scene video object segmentation, and MeViS, which targets motion-guided, language-based video segmentation. Both tracks introduce new, more challenging datasets designed to better reflect real-world scenarios. Through detailed evaluation and analysis, the challenge offers valuable insights into the current state-of-the-art and emerging trends in complex video segmentation. More information can be found on the workshop website: https://pvuw.github.io/.
* Workshop Page: https://pvuw.github.io/. arXiv admin note: text
overlap with arXiv:2504.00476, arXiv:2504.05178
Via

Apr 13, 2025
Abstract:Detecting transitions between intro/credits and main content in videos is a crucial task for content segmentation, indexing, and recommendation systems. Manual annotation of such transitions is labor-intensive and error-prone, while heuristic-based methods often fail to generalize across diverse video styles. In this work, we introduce a deep learning-based approach that formulates the problem as a sequence-to-sequence classification task, where each second of a video is labeled as either "intro" or "film." Our method extracts frames at a fixed rate of 1 FPS, encodes them using CLIP (Contrastive Language-Image Pretraining), and processes the resulting feature representations with a multihead attention model incorporating learned positional encoding. The system achieves an F1-score of 91.0%, Precision of 89.0%, and Recall of 97.0% on the test set, and is optimized for real-time inference, achieving 11.5 FPS on CPU and 107 FPS on high-end GPUs. This approach has practical applications in automated content indexing, highlight detection, and video summarization. Future work will explore multimodal learning, incorporating audio features and subtitles to further enhance detection accuracy.
* 22 pages, 11 figures, submitted as a preprint. ArXiv preprint only,
not submitted to a journal yet
Via

Apr 14, 2025
Abstract:Vision-Language Models (VLMs) can process visual and textual information in multiple formats: texts, images, interleaved texts and images, or even hour-long videos. In this work, we conduct fine-grained quantitative and qualitative analyses of automatic summarization of multimodal presentations using VLMs with various representations as input. From these experiments, we suggest cost-effective strategies for generating summaries from text-heavy multimodal documents under different input-length budgets using VLMs. We show that slides extracted from the video stream can be beneficially used as input against the raw video, and that a structured representation from interleaved slides and transcript provides the best performance. Finally, we reflect and comment on the nature of cross-modal interactions in multimodal presentations and share suggestions to improve the capabilities of VLMs to understand documents of this nature.
Via

Apr 12, 2025
Abstract:Advertisement videos serve as a rich and valuable source of purpose-driven information, encompassing high-quality visual, textual, and contextual cues designed to engage viewers. They are often more complex than general videos of similar duration due to their structured narratives and rapid scene transitions, posing significant challenges to multi-modal large language models (MLLMs). In this work, we introduce VideoAds, the first dataset tailored for benchmarking the performance of MLLMs on advertisement videos. VideoAds comprises well-curated advertisement videos with complex temporal structures, accompanied by \textbf{manually} annotated diverse questions across three core tasks: visual finding, video summary, and visual reasoning. We propose a quantitative measure to compare VideoAds against existing benchmarks in terms of video complexity. Through extensive experiments, we find that Qwen2.5-VL-72B, an opensource MLLM, achieves 73.35\% accuracy on VideoAds, outperforming GPT-4o (66.82\%) and Gemini-1.5 Pro (69.66\%); the two proprietary models especially fall behind the opensource model in video summarization and reasoning, but perform the best in visual finding. Notably, human experts easily achieve a remarkable accuracy of 94.27\%. These results underscore the necessity of advancing MLLMs' temporal modeling capabilities and highlight VideoAds as a potentially pivotal benchmark for future research in understanding video that requires high FPS sampling. The dataset and evaluation code will be publicly available at https://videoadsbenchmark.netlify.app.
Via

Apr 14, 2025
Abstract:We propose SUMART, a method for summarizing and compressing the volume of verbose subtitle translations. SUMART is designed for understanding translated captions (e.g., interlingual conversations via subtitle translation or when watching movies in foreign language audio and translated captions). SUMART is intended for users who want a big-picture and fast understanding of the conversation, audio, video content, and speech in a foreign language. During the training data collection, when a speaker makes a verbose statement, SUMART employs a large language model on-site to compress the volume of subtitles. This compressed data is then stored in a database for fine-tuning purposes. Later, SUMART uses data pairs from those non-compressed ASR results and compressed translated results for fine-tuning the translation model to generate more concise translations for practical uses. In practical applications, SUMART utilizes this trained model to produce concise translation results. Furthermore, as a practical application, we developed an application that allows conversations using subtitle translation in augmented reality spaces. As a pilot study, we conducted qualitative surveys using a SUMART prototype and a survey on the summarization model for SUMART. We envision the most effective use case of this system is where users need to consume a lot of information quickly (e.g., Speech, lectures, podcasts, Q&A in conferences).
* 3 pages, 2 figures
Via

Mar 31, 2025
Abstract:In this paper, we present a modular pressure control system called PneuDrive that can be used for large-scale, pneumatically-actuated soft robots. The design is particularly suited for situations which require distributed pressure control and high flow rates. Up to four embedded pressure control modules can be daisy-chained together as peripherals on a robust RS-485 bus, enabling closed-loop control of up to 16 valves with pressures ranging from 0-100 psig (0-689 kPa) over distances of more than 10 meters. The system is configured as a C++ ROS node by default. However, independent of ROS, we provide a Python interface with a scripting API for added flexibility. We demonstrate our implementation of PneuDrive through various trajectory tracking experiments for a three-joint, continuum soft robot with 12 different pressure inputs. Finally, we present a modeling toolkit with implementations of three dynamic actuation models, all suitable for real-time simulation and control. We demonstrate the use of this toolkit in customizing each model with real-world data and evaluating the performance of each model. The results serve as a reference guide for choosing between several actuation models in a principled manner. A video summarizing our results can be found here: https://bit.ly/3QkrEqO.
* 2024 IEEE 7th International Conference on Soft Robotics (RoboSoft)
* Proceedings of the 2024 IEEE 7th International Conference on Soft
Robotics (RoboSoft)
Via

Apr 01, 2025
Abstract:We present the challenging task of automatically creating a high-level Wikipedia-style article that aggregates information from multiple diverse videos about real-world events, such as natural disasters or political elections. Videos are intuitive sources for retrieval-augmented generation (RAG), but most contemporary RAG workflows focus heavily on text and existing methods for video-based summarization focus on low-level scene understanding rather than high-level event semantics. To close this gap, we introduce WikiVideo, a benchmark consisting of expert-written articles and densely annotated videos that provide evidence for articles' claims, facilitating the integration of video into RAG pipelines and enabling the creation of in-depth content that is grounded in multimodal sources. We further propose Collaborative Article Generation (CAG), a novel interactive method for article creation from multiple videos. CAG leverages an iterative interaction between an r1-style reasoning model and a VideoLLM to draw higher level inferences about the target event than is possible with VideoLLMs alone, which fixate on low-level visual features. We benchmark state-of-the-art VideoLLMs and CAG in both oracle retrieval and RAG settings and find that CAG consistently outperforms alternative methods, while suggesting intriguing avenues for future work.
Via

Mar 28, 2025
Abstract:This paper introduces the largest and most comprehensive dataset of US presidential campaign television advertisements, available in digital format. The dataset also includes machine-searchable transcripts and high-quality summaries designed to facilitate a variety of academic research. To date, there has been great interest in collecting and analyzing US presidential campaign advertisements, but the need for manual procurement and annotation led many to rely on smaller subsets. We design a large-scale parallelized, AI-based analysis pipeline that automates the laborious process of preparing, transcribing, and summarizing videos. We then apply this methodology to the 9,707 presidential ads from the Julian P. Kanter Political Commercial Archive. We conduct extensive human evaluations to show that these transcripts and summaries match the quality of manually generated alternatives. We illustrate the value of this data by including an application that tracks the genesis and evolution of current focal issue areas over seven decades of presidential elections. Our analysis pipeline and codebase also show how to use LLM-based tools to obtain high-quality summaries for other video datasets.
* 17 pages, 7 tables, 4 figures, and linked datasets
Via

Mar 26, 2025
Abstract:The ability to extract compact, meaningful summaries from large-scale and multimodal data is critical for numerous applications, ranging from video analytics to medical reports. Prior methods in cross-modal summarization have often suffered from high computational overheads and limited interpretability. In this paper, we propose a \textit{Cross-Modal State-Space Graph Reasoning} (\textbf{CSS-GR}) framework that incorporates a state-space model with graph-based message passing, inspired by prior work on efficient state-space models. Unlike existing approaches relying on purely sequential models, our method constructs a graph that captures inter- and intra-modal relationships, allowing more holistic reasoning over both textual and visual streams. We demonstrate that our approach significantly improves summarization quality and interpretability while maintaining computational efficiency, as validated on standard multimodal summarization benchmarks. We also provide a thorough ablation study to highlight the contributions of each component.
Via
