Sony Computer Science Laboratory Inc.
Abstract:Rich-text captions are essential to help communication for Deaf and hard-of-hearing (DHH) people, second-language learners, and those with autism spectrum disorder (ASD). They also preserve nuances when converting speech to text, enhancing the realism of presentation scripts and conversation or speech logs. However, current real-time captioning systems lack the capability to alter text attributes (ex. capitalization, sizes, and fonts) at the word level, hindering the accurate conveyance of speaker intent that is expressed in the tones or intonations of the speech. For example, ''YOU should do this'' tends to be considered as indicating ''You'' as the focus of the sentence, whereas ''You should do THIS'' tends to be ''This'' as the focus. This paper proposes a solution that changes the text decorations at the word level in real time. As a prototype, we developed an application that adjusts word size based on the loudness of each spoken word. Feedback from users implies that this system helped to convey the speaker's intent, offering a more engaging and accessible captioning experience.
Abstract:We propose SUMART, a method for summarizing and compressing the volume of verbose subtitle translations. SUMART is designed for understanding translated captions (e.g., interlingual conversations via subtitle translation or when watching movies in foreign language audio and translated captions). SUMART is intended for users who want a big-picture and fast understanding of the conversation, audio, video content, and speech in a foreign language. During the training data collection, when a speaker makes a verbose statement, SUMART employs a large language model on-site to compress the volume of subtitles. This compressed data is then stored in a database for fine-tuning purposes. Later, SUMART uses data pairs from those non-compressed ASR results and compressed translated results for fine-tuning the translation model to generate more concise translations for practical uses. In practical applications, SUMART utilizes this trained model to produce concise translation results. Furthermore, as a practical application, we developed an application that allows conversations using subtitle translation in augmented reality spaces. As a pilot study, we conducted qualitative surveys using a SUMART prototype and a survey on the summarization model for SUMART. We envision the most effective use case of this system is where users need to consume a lot of information quickly (e.g., Speech, lectures, podcasts, Q&A in conferences).
Abstract:Large Language Models (LLMs) are advancing into Multimodal LLMs (MLLMs), capable of processing image, audio, and video as well as text. Combining first-person video, MLLMs show promising potential for understanding human activities through video and audio, enabling many human-computer interaction and human-augmentation applications such as human activity support, real-world agents, and skill transfer to robots or other individuals. However, handling high-resolution, long-duration videos generates large latent representations, leading to substantial memory and processing demands, limiting the length and resolution MLLMs can manage. Reducing video resolution can lower memory usage but often compromises comprehension. This paper introduces a method that optimizes first-person video analysis by integrating eye-tracking data, and proposes a method that decomposes first-person vision video into sub areas for regions of gaze focus. By processing these selectively gazed-focused inputs, our approach achieves task comprehension equivalent to or even better than processing the entire image at full resolution, but with significantly reduced video data input (reduce the number of pixels to one-tenth), offering an efficient solution for using MLLMs to interpret and utilize human skills.
Abstract:Whispering is a common privacy-preserving technique in voice-based interactions, but its effectiveness is limited in noisy environments. In conventional hardware- and software-based noise reduction approaches, isolating whispered speech from ambient noise and other speech sounds remains a challenge. We thus propose WhisperMask, a mask-type microphone featuring a large diaphragm with low sensitivity, making the wearer's voice significantly louder than the background noise. We evaluated WhisperMask using three key metrics: signal-to-noise ratio, quality of recorded voices, and speech recognition rate. Across all metrics, WhisperMask consistently outperformed traditional noise-suppressing microphones and software-based solutions. Notably, WhisperMask showed a 30% higher recognition accuracy for whispered speech recorded in an environment with 80 dB background noise compared with the pin microphone and earbuds. Furthermore, while a denoiser decreased the whispered speech recognition rate of these two microphones by approximately 20% at 30-60 dB noise, WhisperMask maintained a high performance even without denoising, surpassing the other microphones' performances by a significant margin.WhisperMask's design renders the wearer's voice as the dominant input and effectively suppresses background noise without relying on signal processing. This device allows for reliable voice interactions, such as phone calls and voice commands, in a wide range of noisy real-world scenarios while preserving user privacy.
Abstract:The tactile sensation of textiles is critical in determining the comfort of clothing. For remote use, such as online shopping, users cannot physically touch the textile of clothes, making it difficult to evaluate its tactile sensation. Tactile sensing and actuation devices are required to transmit the tactile sensation of textiles. The sensing device needs to recognize different garments, even with hand-held sensors. In addition, the existing actuation device can only present a limited number of known patterns and cannot transmit unknown tactile sensations of textiles. To address these issues, we propose Telextiles, an interface that can remotely transmit tactile sensations of textiles by creating a latent space that reflects the proximity of textiles through contrastive self-supervised learning. We confirm that textiles with similar tactile features are located close to each other in the latent space through a two-dimensional plot. We then compress the latent features for known textile samples into the 1D distance and apply the 16 textile samples to the rollers in the order of the distance. The roller is rotated to select the textile with the closest feature if an unknown textile is detected.
Abstract:Quickly understanding lengthy lecture videos is essential for learners with limited time and interest in various topics to improve their learning efficiency. To this end, video summarization has been actively researched to enable users to view only important scenes from a video. However, these studies focus on either the visual or audio information of a video and extract important segments in the video. Therefore, there is a risk of missing important information when both the teacher's speech and visual information on the blackboard or slides are important, such as in a lecture video. To tackle this issue, we propose FastPerson, a video summarization approach that considers both the visual and auditory information in lecture videos. FastPerson creates summary videos by utilizing audio transcriptions along with on-screen images and text, minimizing the risk of overlooking crucial information for learners. Further, it provides a feature that allows learners to switch between the summary and original videos for each chapter of the video, enabling them to adjust the pace of learning based on their interests and level of understanding. We conducted an evaluation with 40 participants to assess the effectiveness of our method and confirmed that it reduced viewing time by 53\% at the same level of comprehension as that when using traditional video playback methods.
Abstract:Since humans can listen to audio and watch videos at faster speeds than actually observed, we often listen to or watch these pieces of content at higher playback speeds to increase the time efficiency of content comprehension. To further utilize this capability, systems that automatically adjust the playback speed according to the user's condition and the type of content to assist in more efficient comprehension of time-series content have been developed. However, there is still room for these systems to further extend human speed-listening ability by generating speech with playback speed optimized for even finer time units and providing it to humans. In this study, we determine whether humans can hear the optimized speech and propose a system that automatically adjusts playback speed at units as small as phonemes while ensuring speech intelligibility. The system uses the speech recognizer score as a proxy for how well a human can hear a certain unit of speech and maximizes the speech playback speed to the extent that a human can hear. This method can be used to produce fast but intelligible speech. In the evaluation experiment, we compared the speech played back at a constant fast speed and the flexibly speed-up speech generated by the proposed method in a blind test and confirmed that the proposed method produced speech that was easier to listen to.
Abstract:The availability of digital devices operated by voice is expanding rapidly. However, the applications of voice interfaces are still restricted. For example, speaking in public places becomes an annoyance to the surrounding people, and secret information should not be uttered. Environmental noise may reduce the accuracy of speech recognition. To address these limitations, a system to detect a user's unvoiced utterance is proposed. From internal information observed by an ultrasonic imaging sensor attached to the underside of the jaw, our proposed system recognizes the utterance contents without the user's uttering voice. Our proposed deep neural network model is used to obtain acoustic features from a sequence of ultrasound images. We confirmed that audio signals generated by our system can control the existing smart speakers. We also observed that a user can adjust their oral movement to learn and improve the accuracy of their voice recognition.
Abstract:Recognizing whispered speech and converting it to normal speech creates many possibilities for speech interaction. Because the sound pressure of whispered speech is significantly lower than that of normal speech, it can be used as a semi-silent speech interaction in public places without being audible to others. Converting whispers to normal speech also improves the speech quality for people with speech or hearing impairments. However, conventional speech conversion techniques do not provide sufficient conversion quality or require speaker-dependent datasets consisting of pairs of whispered and normal speech utterances. To address these problems, we propose WESPER, a zero-shot, real-time whisper-to-normal speech conversion mechanism based on self-supervised learning. WESPER consists of a speech-to-unit (STU) encoder, which generates hidden speech units common to both whispered and normal speech, and a unit-to-speech (UTS) decoder, which reconstructs speech from the encoded speech units. Unlike the existing methods, this conversion is user-independent and does not require a paired dataset for whispered and normal speech. The UTS decoder can reconstruct speech in any target speaker's voice from speech units, and it requires only an unlabeled target speaker's speech data. We confirmed that the quality of the speech converted from a whisper was improved while preserving its natural prosody. Additionally, we confirmed the effectiveness of the proposed approach to perform speech reconstruction for people with speech or hearing disabilities. (project page: http://lab.rekimoto.org/projects/wesper )
Abstract:Silent speech interface is a promising technology that enables private communications in natural language. However, previous approaches only support a small and inflexible vocabulary, which leads to limited expressiveness. We leverage contrastive learning to learn efficient lipreading representations, enabling few-shot command customization with minimal user effort. Our model exhibits high robustness to different lighting, posture, and gesture conditions on an in-the-wild dataset. For 25-command classification, an F1-score of 0.8947 is achievable only using one shot, and its performance can be further boosted by adaptively learning from more data. This generalizability allowed us to develop a mobile silent speech interface empowered with on-device fine-tuning and visual keyword spotting. A user study demonstrated that with LipLearner, users could define their own commands with high reliability guaranteed by an online incremental learning scheme. Subjective feedback indicated that our system provides essential functionalities for customizable silent speech interactions with high usability and learnability.