Abstract:In this paper, we propose a novel method for extracting information from HTML tables with similar contents but with a different structure. We aim to integrate multiple HTML tables into a single table for retrieval of information containing in various Web pages. The method is designed by extending tree-structured LSTM, the neural network for tree-structured data, in order to extract information that is both linguistic and structural information of HTML data. We evaluate the proposed method through experiments using real data published on the WWW.
Abstract:Quickly understanding lengthy lecture videos is essential for learners with limited time and interest in various topics to improve their learning efficiency. To this end, video summarization has been actively researched to enable users to view only important scenes from a video. However, these studies focus on either the visual or audio information of a video and extract important segments in the video. Therefore, there is a risk of missing important information when both the teacher's speech and visual information on the blackboard or slides are important, such as in a lecture video. To tackle this issue, we propose FastPerson, a video summarization approach that considers both the visual and auditory information in lecture videos. FastPerson creates summary videos by utilizing audio transcriptions along with on-screen images and text, minimizing the risk of overlooking crucial information for learners. Further, it provides a feature that allows learners to switch between the summary and original videos for each chapter of the video, enabling them to adjust the pace of learning based on their interests and level of understanding. We conducted an evaluation with 40 participants to assess the effectiveness of our method and confirmed that it reduced viewing time by 53\% at the same level of comprehension as that when using traditional video playback methods.
Abstract:Since humans can listen to audio and watch videos at faster speeds than actually observed, we often listen to or watch these pieces of content at higher playback speeds to increase the time efficiency of content comprehension. To further utilize this capability, systems that automatically adjust the playback speed according to the user's condition and the type of content to assist in more efficient comprehension of time-series content have been developed. However, there is still room for these systems to further extend human speed-listening ability by generating speech with playback speed optimized for even finer time units and providing it to humans. In this study, we determine whether humans can hear the optimized speech and propose a system that automatically adjusts playback speed at units as small as phonemes while ensuring speech intelligibility. The system uses the speech recognizer score as a proxy for how well a human can hear a certain unit of speech and maximizes the speech playback speed to the extent that a human can hear. This method can be used to produce fast but intelligible speech. In the evaluation experiment, we compared the speech played back at a constant fast speed and the flexibly speed-up speech generated by the proposed method in a blind test and confirmed that the proposed method produced speech that was easier to listen to.
Abstract:When beginners learn to speak a non-native language, it is difficult for them to judge for themselves whether they are speaking well. Therefore, computer-assisted pronunciation training systems are used to detect learner mispronunciations. These systems typically compare the user's speech with that of a specific native speaker as a model in units of rhythm, phonemes, or words and calculate the differences. However, they require extensive speech data with detailed annotations or can only compare with one specific native speaker. To overcome these problems, we propose a new language learning support system that calculates speech scores and detects mispronunciations by beginners based on a small amount of unannotated speech data without comparison to a specific person. The proposed system uses deep learning--based speech processing to display the pronunciation score of the learner's speech and the difference/distance between the learner's and a group of models' pronunciation in an intuitively visual manner. Learners can gradually improve their pronunciation by eliminating differences and shortening the distance from the model until they become sufficiently proficient. Furthermore, since the pronunciation score and difference/distance are not calculated compared to specific sentences of a particular model, users are free to study the sentences they wish to study. We also built an application to help non-native speakers learn English and confirmed that it can improve users' speech intelligibility.