STL, LISN
Abstract:Automatic metrics are used as proxies to evaluate abstractive summarization systems when human annotations are too expensive. To be useful, these metrics should be fine-grained, show a high correlation with human annotations, and ideally be independent of reference quality; however, most standard evaluation metrics for summarization are reference-based, and existing reference-free metrics correlate poorly with relevance, especially on summaries of longer documents. In this paper, we introduce a reference-free metric that correlates well with human evaluated relevance, while being very cheap to compute. We show that this metric can also be used alongside reference-based metrics to improve their robustness in low quality reference settings.
Abstract:Knowledge-based Visual Question Answering about Named Entities is a challenging task that requires retrieving information from a multimodal Knowledge Base. Named entities have diverse visual representations and are therefore difficult to recognize. We argue that cross-modal retrieval may help bridge the semantic gap between an entity and its depictions, and is foremost complementary with mono-modal retrieval. We provide empirical evidence through experiments with a multimodal dual encoder, namely CLIP, on the recent ViQuAE, InfoSeek, and Encyclopedic-VQA datasets. Additionally, we study three different strategies to fine-tune such a model: mono-modal, cross-modal, or joint training. Our method, which combines mono-and cross-modal retrieval, is competitive with billion-parameter models on the three datasets, while being conceptually simpler and computationally cheaper.
Abstract:We present a new pre-training method, Multimodal Inverse Cloze Task, for Knowledge-based Visual Question Answering about named Entities (KVQAE). KVQAE is a recently introduced task that consists in answering questions about named entities grounded in a visual context using a Knowledge Base. Therefore, the interaction between the modalities is paramount to retrieve information and must be captured with complex fusion models. As these models require a lot of training data, we design this pre-training task from existing work in textual Question Answering. It consists in considering a sentence as a pseudo-question and its context as a pseudo-relevant passage and is extended by considering images near texts in multimodal documents. Our method is applicable to different neural network architectures and leads to a 9% relative-MRR and 15% relative-F1 gain for retrieval and reading comprehension, respectively, over a no-pre-training baseline.