Head detection is the process of identifying and locating human heads in images or videos.
Large vision-language models (LVLMs) have shown substantial advances in multimodal understanding and generation. However, when presented with incompetent or adversarial inputs, they frequently produce unreliable or even harmful content, such as fact hallucinations or dangerous instructions. This misalignment with human expectations, referred to as \emph{misbehaviors} of LVLMs, raises serious concerns for deployment in critical applications. These misbehaviors are found to stem from epistemic uncertainty, specifically either conflicting internal knowledge or the absence of supporting information. However, existing uncertainty quantification methods, which typically capture only overall epistemic uncertainty, have shown limited effectiveness in identifying such issues. To address this gap, we propose Evidential Uncertainty Quantification (EUQ), a fine-grained method that captures both information conflict and ignorance for effective detection of LVLM misbehaviors. In particular, we interpret features from the model output head as either supporting (positive) or opposing (negative) evidence. Leveraging Evidence Theory, we model and aggregate this evidence to quantify internal conflict and knowledge gaps within a single forward pass. We extensively evaluate our method across four categories of misbehavior, including hallucinations, jailbreaks, adversarial vulnerabilities, and out-of-distribution (OOD) failures, using state-of-the-art LVLMs, and find that EUQ consistently outperforms strong baselines, showing that hallucinations correspond to high internal conflict and OOD failures to high ignorance. Furthermore, layer-wise evidential uncertainty dynamics analysis helps interpret the evolution of internal representations from a new perspective. The source code is available at https://github.com/HT86159/EUQ.
We present PIRATR, an end-to-end 3D object detection framework for robotic use cases in point clouds. Extending PI3DETR, our method streamlines parametric 3D object detection by jointly estimating multi-class 6-DoF poses and class-specific parametric attributes directly from occlusion-affected point cloud data. This formulation enables not only geometric localization but also the estimation of task-relevant properties for parametric objects, such as a gripper's opening, where the 3D model is adjusted according to simple, predefined rules. The architecture employs modular, class-specific heads, making it straightforward to extend to novel object types without re-designing the pipeline. We validate PIRATR on an automated forklift platform, focusing on three structurally and functionally diverse categories: crane grippers, loading platforms, and pallets. Trained entirely in a synthetic environment, PIRATR generalizes effectively to real outdoor LiDAR scans, achieving a detection mAP of 0.919 without additional fine-tuning. PIRATR establishes a new paradigm of pose-aware, parameterized perception. This bridges the gap between low-level geometric reasoning and actionable world models, paving the way for scalable, simulation-trained perception systems that can be deployed in dynamic robotic environments. Code available at https://github.com/swingaxe/piratr.
We introduce Variational Joint Embedding (VJE), a framework that synthesizes joint embedding and variational inference to enable self-supervised learning of probabilistic representations in a reconstruction-free, non-contrastive setting. Compared to energy-based predictive objectives that optimize pointwise discrepancies, VJE maximizes a symmetric conditional evidence lower bound (ELBO) for a latent-variable model defined directly on encoder embeddings. We instantiate the conditional likelihood with a heavy-tailed Student-$t$ model using a polar decomposition that explicitly decouples directional and radial factors to prevent norm-induced instabilities during training. VJE employs an amortized inference network to parameterize a diagonal Gaussian variational posterior whose feature-wise variances are shared with the likelihood scale to capture anisotropic uncertainty without auxiliary projection heads. Across ImageNet-1K, CIFAR-10/100, and STL-10, VJE achieves performance comparable to standard non-contrastive baselines under linear and k-NN evaluation. We further validate these probabilistic semantics through one-class CIFAR-10 anomaly detection, where likelihood-based scoring under the proposed model outperforms comparable self-supervised baselines.
Deep learning based auto segmentation is increasingly used in radiotherapy, but conventional models often produce anatomically implausible false positives, or hallucinations, in slices lacking target structures. We propose a gated multi-head Transformer architecture based on Swin U-Net, augmented with inter-slice context integration and a parallel detection head, which jointly performs slice-level structure detection via a multi-layer perceptron and pixel-level segmentation through a context-enhanced stream. Detection outputs gate the segmentation predictions to suppress false positives in anatomically invalid slices, and training uses slice-wise Tversky loss to address class imbalance. Experiments on the Prostate-Anatomical-Edge-Cases dataset from The Cancer Imaging Archive demonstrate that the gated model substantially outperforms a non-gated segmentation-only baseline, achieving a mean Dice loss of $0.013 \pm 0.036$ versus $0.732 \pm 0.314$, with detection probabilities strongly correlated with anatomical presence, effectively eliminating spurious segmentations. In contrast, the non-gated model exhibited higher variability and persistent false positives across all slices. These results indicate that detection-based gating enhances robustness and anatomical plausibility in automated segmentation applications, reducing hallucinated predictions without compromising segmentation quality in valid slices, and offers a promising approach for improving the reliability of clinical radiotherapy auto-contouring workflows.
Deep learning models like U-Net and its variants, have established state-of-the-art performance in edge detection tasks and are used by Generative AI services world-wide for their image generation models. However, their decision-making processes remain opaque, operating as "black boxes" that obscure the rationale behind specific boundary predictions. This lack of transparency is a critical barrier in safety-critical applications where verification is mandatory. To bridge the gap between high-performance deep learning and interpretable logic, we propose the Rule-Based Spatial Mixture-of-Experts U-Net (sMoE U-Net). Our architecture introduces two key innovations: (1) Spatially-Adaptive Mixture-of-Experts (sMoE) blocks integrated into the decoder skip connections, which dynamically gate between "Context" (smooth) and "Boundary" (sharp) experts based on local feature statistics; and (2) a Takagi-Sugeno-Kang (TSK) Fuzzy Head that replaces the standard classification layer. This fuzzy head fuses deep semantic features with heuristic edge signals using explicit IF-THEN rules. We evaluate our method on the BSDS500 benchmark, achieving an Optimal Dataset Scale (ODS) F-score of 0.7628, effectively matching purely deep baselines like HED (0.7688) while outperforming the standard U-Net (0.7437). Crucially, our model provides pixel-level explainability through "Rule Firing Maps" and "Strategy Maps," allowing users to visualize whether an edge was detected due to strong gradients, high semantic confidence, or specific logical rule combinations.
Detecting whether a model has been poisoned is a longstanding problem in AI security. In this work, we present a practical scanner for identifying sleeper agent-style backdoors in causal language models. Our approach relies on two key findings: first, sleeper agents tend to memorize poisoning data, making it possible to leak backdoor examples using memory extraction techniques. Second, poisoned LLMs exhibit distinctive patterns in their output distributions and attention heads when backdoor triggers are present in the input. Guided by these observations, we develop a scalable backdoor scanning methodology that assumes no prior knowledge of the trigger or target behavior and requires only inference operations. Our scanner integrates naturally into broader defensive strategies and does not alter model performance. We show that our method recovers working triggers across multiple backdoor scenarios and a broad range of models and fine-tuning methods.
The limited sample size and insufficient diversity of lung nodule CT datasets severely restrict the performance and generalization ability of detection models. Existing methods generate images with insufficient diversity and controllability, suffering from issues such as monotonous texture features and distorted anatomical structures. Therefore, we propose a two-stage generative adversarial network (TSGAN) to enhance the diversity and spatial controllability of synthetic data by decoupling the morphological structure and texture features of lung nodules. In the first stage, StyleGAN is used to generate semantic segmentation mask images, encoding lung nodules and tissue backgrounds to control the anatomical structure of lung nodule images; The second stage uses the DL-Pix2Pix model to translate the mask map into CT images, employing local importance attention to capture local features, while utilizing dynamic weight multi-head window attention to enhance the modeling capability of lung nodule texture and background. Compared to the original dataset, the accuracy improved by 4.6% and mAP by 4% on the LUNA16 dataset. Experimental results demonstrate that TSGAN can enhance the quality of synthetic images and the performance of detection models.
Optical character recognition (OCR), which converts printed or handwritten text into machine-readable form, is widely used in assistive technology for people with blindness and low vision. Yet, most evaluations rely on static datasets that do not reflect the challenges of mobile use. In this study, we systematically evaluated OCR performance under both static and dynamic conditions. Static tests measured detection range across distances of 1-7 meters and viewing angles of 0-75 degrees horizontally. Dynamic tests examined the impact of motion by varying walking speed from slow (0.8 m/s) to very fast (1.8 m/s) and comparing three camera mounting positions: head-mounted, shoulder-mounted, and hand-held. We evaluated both a smartphone and smart glasses, using the phone's main and ultra-wide cameras. Four OCR engines were benchmarked to assess accuracy at different distances and viewing angles: Google Vision, PaddleOCR 3.0, EasyOCR, and Tesseract. PaddleOCR 3.0 was then used to evaluate accuracy at different walking speeds. Accuracy was computed at the character level using the Levenshtein ratio against manually defined ground truth. Results showed that recognition accuracy declined with increased walking speed and wider viewing angles. Google Vision achieved the highest overall accuracy, with PaddleOCR close behind as the strongest open-source alternative. Across devices, the phone's main camera achieved the highest accuracy, and a shoulder-mounted placement yielded the highest average among body positions; however, differences among shoulder, head, and hand were not statistically significant.
Ultrasound (US) imaging exhibits substantial heterogeneity across anatomical structures and acquisition protocols, posing significant challenges to the development of generalizable analysis models. Most existing methods are task-specific, limiting their suitability as clinically deployable foundation models. To address this limitation, the Foundation Model Challenge for Ultrasound Image Analysis (FM\_UIA~2026) introduces a large-scale multi-task benchmark comprising 27 subtasks across segmentation, classification, detection, and regression. In this paper, we present the official baseline for FM\_UIA~2026 based on a unified Multi-Head Multi-Task Learning (MH-MTL) framework that supports all tasks within a single shared network. The model employs an ImageNet-pretrained EfficientNet--B4 backbone for robust feature extraction, combined with a Feature Pyramid Network (FPN) to capture multi-scale contextual information. A task-specific routing strategy enables global tasks to leverage high-level semantic features, while dense prediction tasks exploit spatially detailed FPN representations. Training incorporates a composite loss with task-adaptive learning rate scaling and a cosine annealing schedule. Validation results demonstrate the feasibility and robustness of this unified design, establishing a strong and extensible baseline for ultrasound foundation model research. The code and dataset are publicly available at \href{https://github.com/lijiake2408/Foundation-Model-Challenge-for-Ultrasound-Image-Analysis}{GitHub}.
Long-horizon robotic manipulation requires bridging the gap between high-level planning (System 2) and low-level control (System 1). Current Vision-Language-Action (VLA) models often entangle these processes, performing redundant multimodal reasoning at every timestep, which leads to high latency and goal instability. To address this, we present StreamVLA, a dual-system architecture that unifies textual task decomposition, visual goal imagination, and continuous action generation within a single parameter-efficient backbone. We introduce a "Lock-and-Gated" mechanism to intelligently modulate computation: only when a sub-task transition is detected, the model triggers slow thinking to generate a textual instruction and imagines the specific visual completion state, rather than generic future frames. Crucially, this completion state serves as a time-invariant goal anchor, making the policy robust to execution speed variations. During steady execution, these high-level intents are locked to condition a Flow Matching action head, allowing the model to bypass expensive autoregressive decoding for 72% of timesteps. This hierarchical abstraction ensures sub-goal focus while significantly reducing inference latency. Extensive evaluations demonstrate that StreamVLA achieves state-of-the-art performance, with a 98.5% success rate on the LIBERO benchmark and robust recovery in real-world interference scenarios, achieving a 48% reduction in latency compared to full-reasoning baselines.