Abstract:Recursive filters are treated as linear time-invariant (LTI) systems but they are not: uninitialised, they have an infinite number of outputs for any given input, while if initialised, they are not time-invariant. This short tutorial article explains how and why they can be treated as LTI systems, thereby allowing tools such as Fourier analysis to be applied. It also explains the origin of the z-transform, why the region of convergence is important, and why the z-transform fails to find an infinite number of solutions.
Abstract:A recent line of works, initiated by Russo and Xu, has shown that the generalization error of a learning algorithm can be upper bounded by information measures. In most of the relevant works, the convergence rate of the expected generalization error is in the form of $O(\sqrt{\lambda/n})$ where $\lambda$ is some information-theoretic quantities such as the mutual information or conditional mutual information between the data and the learned hypothesis. However, such a learning rate is typically considered to be ``slow", compared to a ``fast rate" of $O(\lambda/n)$ in many learning scenarios. In this work, we first show that the square root does not necessarily imply a slow rate, and a fast rate result can still be obtained using this bound under appropriate assumptions. Furthermore, we identify the critical conditions needed for the fast rate generalization error, which we call the $(\eta,c)$-central condition. Under this condition, we give information-theoretic bounds on the generalization error and excess risk, with a fast convergence rate for specific learning algorithms such as empirical risk minimization and its regularized version. Finally, several analytical examples are given to show the effectiveness of the bounds.
Abstract:Transfer learning, or domain adaptation, is concerned with machine learning problems in which training and testing data come from possibly different probability distributions. In this work, we give an information-theoretic analysis on the generalization error and excess risk of transfer learning algorithms, following a line of work initiated by Russo and Xu. Our results suggest, perhaps as expected, that the Kullback-Leibler (KL) divergence $D(\mu||\mu')$ plays an important role in the characterizations where $\mu$ and $\mu'$ denote the distribution of the training data and the testing test, respectively. Specifically, we provide generalization error upper bounds for the empirical risk minimization (ERM) algorithm where data from both distributions are available in the training phase. We further apply the analysis to approximated ERM methods such as the Gibbs algorithm and the stochastic gradient descent method. We then generalize the mutual information bound with $\phi$-divergence and Wasserstein distance. These generalizations lead to tighter bounds and can handle the case when $\mu$ is not absolutely continuous with respect to $\mu'$. Furthermore, we apply a new set of techniques to obtain an alternative upper bound which gives a fast (and optimal) learning rate for some learning problems. Finally, inspired by the derived bounds, we propose the InfoBoost algorithm in which the importance weights for source and target data are adjusted adaptively in accordance to information measures. The empirical results show the effectiveness of the proposed algorithm.
Abstract:A recent line of works, initiated by Russo and Xu, has shown that the generalization error of a learning algorithm can be upper bounded by information measures. In most of the relevant works, the convergence rate of the expected generalization error is in the form of O(sqrt{lambda/n}) where lambda is some information-theoretic quantities such as the mutual information between the data sample and the learned hypothesis. However, such a learning rate is typically considered to be "slow", compared to a "fast rate" of O(1/n) in many learning scenarios. In this work, we first show that the square root does not necessarily imply a slow rate, and a fast rate (O(1/n)) result can still be obtained using this bound under appropriate assumptions. Furthermore, we identify the key conditions needed for the fast rate generalization error, which we call the (eta,c)-central condition. Under this condition, we give information-theoretic bounds on the generalization error and excess risk, with a convergence rate of O(\lambda/{n}) for specific learning algorithms such as empirical risk minimization. Finally, analytical examples are given to show the effectiveness of the bounds.
Abstract:The establishment of the link between causality and unsupervised domain adaptation (UDA)/semi-supervised learning (SSL) has led to methodological advances in these learning problems in recent years. However, a formal theory that explains the role of causality in the generalization performance of UDA/SSL is still lacking. In this paper, we consider the UDA/SSL setting where we access m labeled source data and n unlabeled target data as training instances under a parametric probabilistic model. We study the learning performance (e.g., excess risk) of prediction in the target domain. Specifically, we distinguish two scenarios: the learning problem is called causal learning if the feature is the cause and the label is the effect, and is called anti-causal learning otherwise. We show that in causal learning, the excess risk depends on the size of the source sample at a rate of O(1/m) only if the labelling distribution between the source and target domains remains unchanged. In anti-causal learning, we show that the unlabeled data dominate the performance at a rate of typically O(1/n). Our analysis is based on the notion of potential outcome random variables and information theory. These results bring out the relationship between the data sample size and the hardness of the learning problem with different causal mechanisms.
Abstract:Approximate Message Passing (AMP) is an efficient iterative parameter-estimation technique for certain high-dimensional linear systems with non-Gaussian distributions, such as sparse systems. In AMP, a so-called Onsager term is added to keep estimation errors approximately Gaussian. Orthogonal AMP (OAMP) does not require this Onsager term, relying instead on an orthogonalization procedure to keep the current errors uncorrelated with (i.e., orthogonal to) past errors. In this paper, we show that the orthogonality in OAMP ensures that errors are "asymptotically independently and identically distributed Gaussian" (AIIDG). This AIIDG property, which is essential for the attractive performance of OAMP, holds for separable functions. We present a procedure to realize the required orthogonality for OAMP through Gram-Schmidt orthogonalization (GSO). We show that expectation propagation (EP), AMP, OAMP and some other algorithms can be unified under this orthogonality framework. The simplicity and generality of OAMP provide efficient solutions for estimation problems beyond the classical linear models; related applications will be discussed in a companion paper where new algorithms are developed for problems with multiple constraints and multiple measurement variables.
Abstract:Transfer learning is a machine learning paradigm where knowledge from one problem is utilized to solve a new but related problem. While conceivable that knowledge from one task could be useful for solving a related task, if not executed properly, transfer learning algorithms can impair the learning performance instead of improving it -- commonly known as negative transfer. In this paper, we study transfer learning from a Bayesian perspective, where a parametric statistical model is used. Specifically, we study three variants of transfer learning problems, instantaneous, online, and time-variant transfer learning. For each problem, we define an appropriate objective function, and provide either exact expressions or upper bounds on the learning performance using information-theoretic quantities, which allow simple and explicit characterizations when the sample size becomes large. Furthermore, examples show that the derived bounds are accurate even for small sample sizes. The obtained bounds give valuable insights into the effect of prior knowledge for transfer learning, at least with respect to our Bayesian formulation of the transfer learning problem. In particular, we formally characterize the conditions under which negative transfer occurs. Lastly, we devise two (online) transfer learning algorithms that are amenable to practical implementations, one of which does not require the parametric assumption. We demonstrate the effectiveness of our algorithms with real data sets, focusing primarily on when the source and target data have strong similarities.
Abstract:Transfer learning is a machine learning paradigm where the knowledge from one task is utilized to resolve the problem in a related task. On the one hand, it is conceivable that knowledge from one task could be useful for solving a related problem. On the other hand, it is also recognized that if not executed properly, transfer learning algorithms could in fact impair the learning performance instead of improving it - commonly known as "negative transfer". In this paper, we study the online transfer learning problems where the source samples are given in an offline way while the target samples arrive sequentially. We define the expected regret of the online transfer learning problem and provide upper bounds on the regret using information-theoretic quantities. We also obtain exact expressions for the bounds when the sample size becomes large. Examples show that the derived bounds are accurate even for small sample sizes. Furthermore, the obtained bounds give valuable insight on the effect of prior knowledge for transfer learning in our formulation. In particular, we formally characterize the conditions under which negative transfer occurs.
Abstract:Hopfield neural networks are a possible basis for modelling associative memory in living organisms. After summarising previous studies in the field, we take a new look at learning rules, exhibiting them as descent-type algorithms for various cost functions. We also propose several new cost functions suitable for learning. We discuss the role of biases (the external inputs) in the learning process in Hopfield networks. Furthermore, we apply Newtons method for learning memories, and experimentally compare the performances of various learning rules. Finally, to add to the debate whether allowing connections of a neuron to itself enhances memory capacity, we numerically investigate the effects of self coupling. Keywords: Hopfield Networks, associative memory, content addressable memory, learning rules, gradient descent, attractor networks
Abstract:Transfer learning, or domain adaptation, is concerned with machine learning problems in which training and testing data come from possibly different distributions (denoted as $\mu$ and $\mu'$, respectively). In this work, we give an information-theoretic analysis on the generalization error and the excess risk of transfer learning algorithms, following a line of work initiated by Russo and Zhou. Our results suggest, perhaps as expected, that the Kullback-Leibler (KL) divergence $D(mu||mu')$ plays an important role in characterizing the generalization error in the settings of domain adaptation. Specifically, we provide generalization error upper bounds for general transfer learning algorithms and extend the results to a specific empirical risk minimization (ERM) algorithm where data from both distributions are available in the training phase. We further apply the method to iterative, noisy gradient descent algorithms, and obtain upper bounds which can be easily calculated, only using parameters from the learning algorithms. A few illustrative examples are provided to demonstrate the usefulness of the results. In particular, our bound is tighter in specific classification problems than the bound derived using Rademacher complexity.