Abstract:In this paper we deal with image classification tasks using the powerful CLIP vision-language model. Our goal is to advance the classification performance using the CLIP's image encoder, by proposing a novel Large Multimodal Model (LMM) based regularization method. The proposed method uses an LMM to extract semantic descriptions for the images of the dataset. Then, it uses the CLIP's text encoder, frozen, in order to obtain the corresponding text embeddings and compute the mean semantic class descriptions. Subsequently, we adapt the CLIP's image encoder by adding a classification head, and we train it along with the image encoder output, apart from the main classification objective, with an additional auxiliary objective. The additional objective forces the embeddings at the image encoder's output to become similar to their corresponding LMM-generated mean semantic class descriptions. In this way, it produces embeddings with enhanced discrimination ability, leading to improved classification performance. The effectiveness of the proposed regularization method is validated through extensive experiments on three image classification datasets.
Abstract:In this paper we deal with the task of Disturbing Image Detection (DID), exploiting knowledge encoded in Large Multimodal Models (LMMs). Specifically, we propose to exploit LMM knowledge in a two-fold manner: first by extracting generic semantic descriptions, and second by extracting elicited emotions. Subsequently, we use the CLIP's text encoder in order to obtain the text embeddings of both the generic semantic descriptions and LMM-elicited emotions. Finally, we use the aforementioned text embeddings along with the corresponding CLIP's image embeddings for performing the DID task. The proposed method significantly improves the baseline classification accuracy, achieving state-of-the-art performance on the augmented Disturbing Image Detection dataset.
Abstract:In this paper, we aim to improve the performance of a deep learning model towards image classification tasks, proposing a novel anchor-based training methodology, named \textit{Online Anchor-based Training} (OAT). The OAT method, guided by the insights provided in the anchor-based object detection methodologies, instead of learning directly the class labels, proposes to train a model to learn percentage changes of the class labels with respect to defined anchors. We define as anchors the batch centers at the output of the model. Then, during the test phase, the predictions are converted back to the original class label space, and the performance is evaluated. The effectiveness of the OAT method is validated on four datasets.
Abstract:In this paper we introduce a new dataset for 360-degree video summarization: the transformation of 360-degree video content to concise 2D-video summaries that can be consumed via traditional devices, such as TV sets and smartphones. The dataset includes ground-truth human-generated summaries, that can be used for training and objectively evaluating 360-degree video summarization methods. Using this dataset, we train and assess two state-of-the-art summarization methods that were originally proposed for 2D-video summarization, to serve as a baseline for future comparisons with summarization methods that are specifically tailored to 360-degree video. Finally, we present an interactive tool that was developed to facilitate the data annotation process and can assist other annotation activities that rely on video fragment selection.
Abstract:In this paper we address image classification tasks leveraging knowledge encoded in Large Multimodal Models (LMMs). More specifically, we use the MiniGPT-4 model to extract semantic descriptions for the images, in a multimodal prompting fashion. In the current literature, vision language models such as CLIP, among other approaches, are utilized as feature extractors, using only the image encoder, for solving image classification tasks. In this paper, we propose to additionally use the text encoder to obtain the text embeddings corresponding to the MiniGPT-4-generated semantic descriptions. Thus, we use both the image and text embeddings for solving the image classification task. The experimental evaluation on three datasets validates the improved classification performance achieved by exploiting LMM-based knowledge.
Abstract:In this paper, we propose an integrated framework for multi-granular explanation of video summarization. This framework integrates methods for producing explanations both at the fragment level (indicating which video fragments influenced the most the decisions of the summarizer) and the more fine-grained visual object level (highlighting which visual objects were the most influential for the summarizer). To build this framework, we extend our previous work on this field, by investigating the use of a model-agnostic, perturbation-based approach for fragment-level explanation of the video summarization results, and introducing a new method that combines the results of video panoptic segmentation with an adaptation of a perturbation-based explanation approach to produce object-level explanations. The performance of the developed framework is evaluated using a state-of-the-art summarization method and two datasets for benchmarking video summarization. The findings of the conducted quantitative and qualitative evaluations demonstrate the ability of our framework to spot the most and least influential fragments and visual objects of the video for the summarizer, and to provide a comprehensive set of visual-based explanations about the output of the summarization process.
Abstract:This paper presents a baseline approach and an experimental protocol for a specific content verification problem: detecting discrepancies between the audio and video modalities in multimedia content. We first design and optimize an audio-visual scene classifier, to compare with existing classification baselines that use both modalities. Then, by applying this classifier separately to the audio and the visual modality, we can detect scene-class inconsistencies between them. To facilitate further research and provide a common evaluation platform, we introduce an experimental protocol and a benchmark dataset simulating such inconsistencies. Our approach achieves state-of-the-art results in scene classification and promising outcomes in audio-visual discrepancies detection, highlighting its potential in content verification applications.
Abstract:In this paper we propose a new framework for evaluating the performance of explanation methods on the decisions of a deepfake detector. This framework assesses the ability of an explanation method to spot the regions of a fake image with the biggest influence on the decision of the deepfake detector, by examining the extent to which these regions can be modified through a set of adversarial attacks, in order to flip the detector's prediction or reduce its initial prediction; we anticipate a larger drop in deepfake detection accuracy and prediction, for methods that spot these regions more accurately. Based on this framework, we conduct a comparative study using a state-of-the-art model for deepfake detection that has been trained on the FaceForensics++ dataset, and five explanation methods from the literature. The findings of our quantitative and qualitative evaluations document the advanced performance of the LIME explanation method against the other compared ones, and indicate this method as the most appropriate for explaining the decisions of the utilized deepfake detector.
Abstract:The development and adoption of Vision Transformers and other deep-learning architectures for image classification tasks has been rapid. However, the "black box" nature of neural networks is a barrier to adoption in applications where explainability is essential. While some techniques for generating explanations have been proposed, primarily for Convolutional Neural Networks, adapting such techniques to the new paradigm of Vision Transformers is non-trivial. This paper presents T-TAME, Transformer-compatible Trainable Attention Mechanism for Explanations, a general methodology for explaining deep neural networks used in image classification tasks. The proposed architecture and training technique can be easily applied to any convolutional or Vision Transformer-like neural network, using a streamlined training approach. After training, explanation maps can be computed in a single forward pass; these explanation maps are comparable to or outperform the outputs of computationally expensive perturbation-based explainability techniques, achieving SOTA performance. We apply T-TAME to three popular deep learning classifier architectures, VGG-16, ResNet-50, and ViT-B-16, trained on the ImageNet dataset, and we demonstrate improvements over existing state-of-the-art explainability methods. A detailed analysis of the results and an ablation study provide insights into how the T-TAME design choices affect the quality of the generated explanation maps.
Abstract:In this work, we present an integrated system for spatiotemporal summarization of 360-degrees videos. The video summary production mainly involves the detection of salient events and their synopsis into a concise summary. The analysis relies on state-of-the-art methods for saliency detection in 360-degrees video (ATSal and SST-Sal) and video summarization (CA-SUM). It also contains a mechanism that classifies a 360-degrees video based on the use of static or moving camera during recording and decides which saliency detection method will be used, as well as a 2D video production component that is responsible to create a conventional 2D video containing the salient events in the 360-degrees video. Quantitative evaluations using two datasets for 360-degrees video saliency detection (VR-EyeTracking, Sports-360) show the accuracy and positive impact of the developed decision mechanism, and justify our choice to use two different methods for detecting the salient events. A qualitative analysis using content from these datasets, gives further insights about the functionality of the decision mechanism, shows the pros and cons of each used saliency detection method and demonstrates the advanced performance of the trained summarization method against a more conventional approach.