Detecting Image Manipulation


Detecting image manipulation is the process of identifying and detecting manipulated or fake images using deep learning techniques.

Fact or Fake? Assessing the Role of Deepfake Detectors in Multimodal Misinformation Detection

Add code
Feb 02, 2026
Viaarxiv icon

The Verification Crisis: Expert Perceptions of GenAI Disinformation and the Case for Reproducible Provenance

Add code
Feb 02, 2026
Viaarxiv icon

BioTamperNet: Affinity-Guided State-Space Model Detecting Tampered Biomedical Images

Add code
Feb 01, 2026
Viaarxiv icon

AI-Generated Image Detectors Overrely on Global Artifacts: Evidence from Inpainting Exchange

Add code
Jan 30, 2026
Viaarxiv icon

HERS: Hidden-Pattern Expert Learning for Risk-Specific Vehicle Damage Adaptation in Diffusion Models

Add code
Jan 29, 2026
Viaarxiv icon

DeMark: A Query-Free Black-Box Attack on Deepfake Watermarking Defenses

Add code
Jan 23, 2026
Viaarxiv icon

DTP: A Simple yet Effective Distracting Token Pruning Framework for Vision-Language Action Models

Add code
Jan 22, 2026
Viaarxiv icon

VTONGuard: Automatic Detection and Authentication of AI-Generated Virtual Try-On Content

Add code
Jan 20, 2026
Viaarxiv icon

DiffFace-Edit: A Diffusion-Based Facial Dataset for Forgery-Semantic Driven Deepfake Detection Analysis

Add code
Jan 20, 2026
Viaarxiv icon

RCDN: Real-Centered Detection Network for Robust Face Forgery Identification

Add code
Jan 17, 2026
Viaarxiv icon