Abstract:Out-of-context (OOC) misinformation poses a significant challenge in multimodal fact-checking, where images are paired with texts that misrepresent their original context to support false narratives. Recent research in evidence-based OOC detection has seen a trend towards increasingly complex architectures, incorporating Transformers, foundation models, and large language models. In this study, we introduce a simple yet robust baseline, which assesses MUltimodal SimilaritiEs (MUSE), specifically the similarity between image-text pairs and external image and text evidence. Our results demonstrate that MUSE, when used with conventional classifiers like Decision Tree, Random Forest, and Multilayer Perceptron, can compete with and even surpass the state-of-the-art on the NewsCLIPpings and VERITE datasets. Furthermore, integrating MUSE in our proposed "Attentive Intermediate Transformer Representations" (AITR) significantly improved performance, by 3.3% and 7.5% on NewsCLIPpings and VERITE, respectively. Nevertheless, the success of MUSE, relying on surface-level patterns and shortcuts, without examining factuality and logical inconsistencies, raises critical questions about how we define the task, construct datasets, collect external evidence and overall, how we assess progress in the field. We release our code at: https://github.com/stevejpapad/outcontext-misinfo-progress
Abstract:Automated fact-checking (AFC) is garnering increasing attention by researchers aiming to help fact-checkers combat the increasing spread of misinformation online. While many existing AFC methods incorporate external information from the Web to help examine the veracity of claims, they often overlook the importance of verifying the source and quality of collected "evidence". One overlooked challenge involves the reliance on "leaked evidence", information gathered directly from fact-checking websites and used to train AFC systems, resulting in an unrealistic setting for early misinformation detection. Similarly, the inclusion of information from unreliable sources can undermine the effectiveness of AFC systems. To address these challenges, we present a comprehensive approach to evidence verification and filtering. We create the "CREDible, Unreliable or LEaked" (CREDULE) dataset, which consists of 91,632 articles classified as Credible, Unreliable and Fact checked (Leaked). Additionally, we introduce the EVidence VERification Network (EVVER-Net), trained on CREDULE to detect leaked and unreliable evidence in both short and long texts. EVVER-Net can be used to filter evidence collected from the Web, thus enhancing the robustness of end-to-end AFC systems. We experiment with various language models and show that EVVER-Net can demonstrate impressive performance of up to 91.5% and 94.4% accuracy, while leveraging domain credibility scores along with short or long texts, respectively. Finally, we assess the evidence provided by widely-used fact-checking datasets including LIAR-PLUS, MOCHEG, FACTIFY, NewsCLIPpings+ and VERITE, some of which exhibit concerning rates of leaked and unreliable evidence.
Abstract:Online misinformation is often multimodal in nature, i.e., it is caused by misleading associations between texts and accompanying images. To support the fact-checking process, researchers have been recently developing automatic multimodal methods that gather and analyze external information, evidence, related to the image-text pairs under examination. However, prior works assumed all collected evidence to be relevant. In this study, we introduce a "Relevant Evidence Detection" (RED) module to discern whether each piece of evidence is relevant, to support or refute the claim. Specifically, we develop the "Relevant Evidence Detection Directed Transformer" (RED-DOT) and explore multiple architectural variants (e.g., single or dual-stage) and mechanisms (e.g., "guided attention"). Extensive ablation and comparative experiments demonstrate that RED-DOT achieves significant improvements over the state-of-the-art on the VERITE benchmark by up to 28.5%. Furthermore, our evidence re-ranking and element-wise modality fusion led to RED-DOT achieving competitive and even improved performance on NewsCLIPings+, without the need for numerous evidence or multiple backbone encoders. Finally, our qualitative analysis demonstrates that the proposed "guided attention" module has the potential to enhance the architecture's interpretability. We release our code at: https://github.com/stevejpapad/relevant-evidence-detection
Abstract:Multimedia content has become ubiquitous on social media platforms, leading to the rise of multimodal misinformation and the urgent need for effective strategies to detect and prevent its spread. This study focuses on CrossModal Misinformation (CMM) where image-caption pairs work together to spread falsehoods. We contrast CMM with Asymmetric Multimodal Misinformation (AMM), where one dominant modality propagates falsehoods while other modalities have little or no influence. We show that AMM adds noise to the training and evaluation process while exacerbating the unimodal bias, where text-only or image-only detectors can seemingly outperform their multimodal counterparts on an inherently multimodal task. To address this issue, we collect and curate FIGMENTS, a robust evaluation benchmark for CMM, which consists of real world cases of misinformation, excludes AMM and utilizes modality balancing to successfully alleviate unimodal bias. FIGMENTS also provides a first step towards fine-grained CMM detection by including three classes: truthful, out-of-context, and miscaptioned image-caption pairs. Furthermore, we introduce a method for generating realistic synthetic training data that maintains crossmodal relations between legitimate images and false human-written captions that we term Crossmodal HArd Synthetic MisAlignment (CHASMA). We conduct extensive comparative study using a Transformer-based architecture. Our results show that incorporating CHASMA in conjunction with other generated datasets consistently improved the overall performance on FIGMENTS in both binary (+6.26%) and multiclass settings (+15.8%).We release our code at: https://github.com/stevejpapad/figments-and-misalignments
Abstract:With the expansion of social media and the increasing dissemination of multimedia content, the spread of misinformation has become a major concern. This necessitates effective strategies for multimodal misinformation detection (MMD) that detect whether the combination of an image and its accompanying text could mislead or misinform. Due to the data-intensive nature of deep neural networks and the labor-intensive process of manual annotation, researchers have been exploring various methods for automatically generating synthetic multimodal misinformation - which we refer to as Synthetic Misinformers - in order to train MMD models. However, limited evaluation on real-world misinformation and a lack of comparisons with other Synthetic Misinformers makes difficult to assess progress in the field. To address this, we perform a comparative study on existing and new Synthetic Misinformers that involves (1) out-of-context (OOC) image-caption pairs, (2) cross-modal named entity inconsistency (NEI) as well as (3) hybrid approaches and we evaluate them against real-world misinformation; using the COSMOS benchmark. The comparative study showed that our proposed CLIP-based Named Entity Swapping can lead to MMD models that surpass other OOC and NEI Misinformers in terms of multimodal accuracy and that hybrid approaches can lead to even higher detection accuracy. Nevertheless, after alleviating information leakage from the COSMOS evaluation protocol, low Sensitivity scores indicate that the task is significantly more challenging than previous studies suggested. Finally, our findings showed that NEI-based Synthetic Misinformers tend to suffer from a unimodal bias, where text-only MMDs can outperform multimodal ones.
Abstract:Extracellular recordings are severely contaminated by a considerable amount of noise sources, rendering the denoising process an extremely challenging task that should be tackled for efficient spike sorting. To this end, we propose an end-to-end deep learning approach to the problem, utilizing a Fully Convolutional Denoising Autoencoder, which learns to produce a clean neuronal activity signal from a noisy multichannel input. The experimental results on simulated data show that our proposed method can improve significantly the quality of noise-corrupted neural signals, outperforming widely-used wavelet denoising techniques.