Abstract:EXplainable Artificial Intelligence (XAI) approaches are widely applied for identifying fairness issues in Artificial Intelligence (AI) systems. However, in the context of facial analysis, existing XAI approaches, such as pixel attribution methods, offer explanations for individual images, posing challenges in assessing the overall behavior of a model, which would require labor-intensive manual inspection of a very large number of instances and leaving to the human the task of drawing a general impression of the model behavior from the individual outputs. Addressing this limitation, we introduce FaceX, the first method that provides a comprehensive understanding of face attribute classifiers through summary model explanations. Specifically, FaceX leverages the presence of distinct regions across all facial images to compute a region-level aggregation of model activations, allowing for the visualization of the model's region attribution across 19 predefined regions of interest in facial images, such as hair, ears, or skin. Beyond spatial explanations, FaceX enhances interpretability by visualizing specific image patches with the highest impact on the model's decisions for each facial region within a test benchmark. Through extensive evaluation in various experimental setups, including scenarios with or without intentional biases and mitigation efforts on four benchmarks, namely CelebA, FairFace, CelebAMask-HQ, and Racial Faces in the Wild, FaceX demonstrates high effectiveness in identifying the models' biases.
Abstract:Mitigating biases in computer vision models is an essential step towards the trustworthiness of artificial intelligence models. Existing bias mitigation methods focus on a small set of predefined biases, limiting their applicability in visual datasets where multiple, possibly unknown biases exist. To address this limitation, we introduce MAVias, an open-set bias mitigation approach leveraging foundation models to discover spurious associations between visual attributes and target classes. MAVias first captures a wide variety of visual features in natural language via a foundation image tagging model, and then leverages a large language model to select those visual features defining the target class, resulting in a set of language-coded potential visual biases. We then translate this set of potential biases into vision-language embeddings and introduce an in-processing bias mitigation approach to prevent the model from encoding information related to them. Our experiments on diverse datasets, including CelebA, Waterbirds, ImageNet, and UrbanCars, show that MAVias effectively detects and mitigates a wide range of biases in visual recognition tasks outperforming current state-of-the-art.
Abstract:Energy efficiency of Convolutional Neural Networks (CNNs) has become an important area of research, with various strategies being developed to minimize the power consumption of these models. Previous efforts, including techniques like model pruning, quantization, and hardware optimization, have made significant strides in this direction. However, there remains a need for more effective on device AI solutions that balance energy efficiency with model performance. In this paper, we propose a novel approach to reduce the energy requirements of inference of CNNs. Our methodology employs two small Complementary CNNs that collaborate with each other by covering each other's "weaknesses" in predictions. If the confidence for a prediction of the first CNN is considered low, the second CNN is invoked with the aim of producing a higher confidence prediction. This dual-CNN setup significantly reduces energy consumption compared to using a single large deep CNN. Additionally, we propose a memory component that retains previous classifications for identical inputs, bypassing the need to re-invoke the CNNs for the same input, further saving energy. Our experiments on a Jetson Nano computer demonstrate an energy reduction of up to 85.8% achieved on modified datasets where each sample was duplicated once. These findings indicate that leveraging a complementary CNN pair along with a memory component effectively reduces inference energy while maintaining high accuracy.
Abstract:Recent works have established that AI models introduce spectral artifacts into generated images and propose approaches for learning to capture them using labeled data. However, the significant differences in such artifacts among different generative models hinder these approaches from generalizing to generators not seen during training. In this work, we build upon the key idea that the spectral distribution of real images constitutes both an invariant and highly discriminative pattern for AI-generated image detection. To model this under a self-supervised setup, we employ masked spectral learning using the pretext task of frequency reconstruction. Since generated images constitute out-of-distribution samples for this model, we propose spectral reconstruction similarity to capture this divergence. Moreover, we introduce spectral context attention, which enables our approach to efficiently capture subtle spectral inconsistencies in images of any resolution. Our spectral AI-generated image detection approach (SPAI) achieves a 5.5% absolute improvement in AUC over the previous state-of-the-art across 13 recent generative approaches, while exhibiting robustness against common online perturbations.
Abstract:Deepfake technology has rapidly advanced, posing significant threats to information integrity and societal trust. While significant progress has been made in detecting deepfakes, the simultaneous manipulation of audio and visual modalities, sometimes at small parts but still altering the meaning, presents a more challenging detection scenario. We present a novel audio-visual deepfake detection framework that leverages the inter-modality differences in machine perception of speech, based on the assumption that in real samples - in contrast to deepfakes - visual and audio signals coincide in terms of information. Our framework leverages features from deep networks that specialize in video and audio speech recognition to spot frame-level cross-modal incongruities, and in that way to temporally localize the deepfake forgery. To this end, DiMoDif employs a Transformer encoder-based architecture with a feature pyramid scheme and local attention, and optimizes the detection model through a composite loss function accounting for frame-level detections and fake intervals localization. DiMoDif outperforms the state-of-the-art on the Temporal Forgery Localization task by +47.88% AP@0.75 on AV-Deepfake1M, and performs on-par on LAV-DF. On the Deepfake Detection task, it outperforms the state-of-the-art by +30.5% AUC on AV-Deepfake1M, +2.8% AUC on FakeAVCeleb, and performs on-par on LAV-DF. Code available at https://github.com/mever-team/dimodif.
Abstract:Deep learning techniques have been successfully applied in Synthetic Aperture Radar (SAR) target recognition in static scenarios relying on predefined datasets. However, in real-world scenarios, models must incrementally learn new information without forgetting previously learned knowledge. Models' tendency to forget old knowledge when learning new tasks, known as catastrophic forgetting, remains an open challenge. In this paper, an incremental learning framework, called IncSAR, is proposed to mitigate catastrophic forgetting in SAR target recognition. IncSAR comprises a Vision Transformer (ViT) and a custom-designed Convolutional Neural Network (CNN) in individual branches combined through a late-fusion strategy. A denoising module, utilizing the properties of Robust Principal Component Analysis (RPCA), is introduced to alleviate the speckle noise present in SAR images. Moreover, a random projection layer is employed to enhance the linear separability of features, and a Linear Discriminant Analysis (LDA) approach is proposed to decorrelate the extracted class prototypes. Experimental results on the MSTAR and OpenSARShip benchmark datasets demonstrate that IncSAR outperforms state-of-the-art approaches, leading to an improvement from $98.05\%$ to $99.63\%$ in average accuracy and from $3.05\%$ to $0.33\%$ in performance dropping rate.
Abstract:Computer vision (CV) datasets often exhibit biases that are perpetuated by deep learning models. While recent efforts aim to mitigate these biases and foster fair representations, they fail in complex real-world scenarios. In particular, existing methods excel in controlled experiments involving benchmarks with single-attribute injected biases, but struggle with multi-attribute biases being present in well-established CV datasets. Here, we introduce BAdd, a simple yet effective method that allows for learning fair representations invariant to the attributes introducing bias by incorporating features representing these attributes into the backbone. BAdd is evaluated on seven benchmarks and exhibits competitive performance, surpassing state-of-the-art methods on both single- and multi-attribute benchmarks. Notably, BAdd achieves +27.5% and +5.5% absolute accuracy improvements on the challenging multi-attribute benchmarks, FB-Biased-MNIST and CelebA, respectively.
Abstract:Synthetic images disseminated online significantly differ from those used during the training and evaluation of the state-of-the-art detectors. In this work, we analyze the performance of synthetic image detectors as deceptive synthetic images evolve throughout their online lifespan. Our study reveals that, despite advancements in the field, current state-of-the-art detectors struggle to distinguish between synthetic and real images in the wild. Moreover, we show that the time elapsed since the initial online appearance of a synthetic image negatively affects the performance of most detectors. Ultimately, by employing a retrieval-assisted detection approach, we demonstrate the feasibility to maintain initial detection performance throughout the whole online lifespan of an image and enhance the average detection efficacy across several state-of-the-art detectors by 6.7% and 7.8% for balanced accuracy and AUC metrics, respectively.
Abstract:Generative AI technologies produce hyper-realistic imagery that can be used for nefarious purposes such as producing misleading or harmful content, among others. This makes Synthetic Image Detection (SID) an essential tool for defending against AI-generated harmful content. Current SID methods typically resize input images to a fixed resolution or perform center-cropping due to computational concerns, leading to challenges in effectively detecting artifacts in high-resolution images. To this end, we propose TextureCrop, a novel image pre-processing technique. By focusing on high-frequency image parts where generation artifacts are prevalent, TextureCrop effectively enhances SID accuracy while maintaining manageable memory requirements. Experimental results demonstrate a consistent improvement in AUC across various detectors by 5.7% compared to center cropping and by 14% compared to resizing, across high-resolution images from the Forensynths and Synthbuster datasets.
Abstract:Out-of-context (OOC) misinformation poses a significant challenge in multimodal fact-checking, where images are paired with texts that misrepresent their original context to support false narratives. Recent research in evidence-based OOC detection has seen a trend towards increasingly complex architectures, incorporating Transformers, foundation models, and large language models. In this study, we introduce a simple yet robust baseline, which assesses MUltimodal SimilaritiEs (MUSE), specifically the similarity between image-text pairs and external image and text evidence. Our results demonstrate that MUSE, when used with conventional classifiers like Decision Tree, Random Forest, and Multilayer Perceptron, can compete with and even surpass the state-of-the-art on the NewsCLIPpings and VERITE datasets. Furthermore, integrating MUSE in our proposed "Attentive Intermediate Transformer Representations" (AITR) significantly improved performance, by 3.3% and 7.5% on NewsCLIPpings and VERITE, respectively. Nevertheless, the success of MUSE, relying on surface-level patterns and shortcuts, without examining factuality and logical inconsistencies, raises critical questions about how we define the task, construct datasets, collect external evidence and overall, how we assess progress in the field. We release our code at: https://github.com/stevejpapad/outcontext-misinfo-progress