Anomaly Detection


Anomaly detection is the process of identifying unexpected items or events in data sets, which differ from the norm.

TIPS Over Tricks: Simple Prompts for Effective Zero-shot Anomaly Detection

Add code
Feb 03, 2026
Viaarxiv icon

COMET: Codebook-based Online-adaptive Multi-scale Embedding for Time-series Anomaly Detection

Add code
Feb 03, 2026
Viaarxiv icon

ContraLog: Log File Anomaly Detection with Contrastive Learning and Masked Language Modeling

Add code
Feb 03, 2026
Viaarxiv icon

Anomaly Detection via Mean Shift Density Enhancement

Add code
Feb 03, 2026
Viaarxiv icon

RPG-AE: Neuro-Symbolic Graph Autoencoders with Rare Pattern Mining for Provenance-Based Anomaly Detection

Add code
Feb 03, 2026
Viaarxiv icon

SAGE-5GC: Security-Aware Guidelines for Evaluating Anomaly Detection in the 5G Core Network

Add code
Feb 03, 2026
Viaarxiv icon

Interpretable Logical Anomaly Classification via Constraint Decomposition and Instruction Fine-Tuning

Add code
Feb 03, 2026
Viaarxiv icon

Referring Industrial Anomaly Segmentation

Add code
Feb 03, 2026
Viaarxiv icon

Refining Decision Boundaries In Anomaly Detection Using Similarity Search Within the Feature Space

Add code
Feb 02, 2026
Viaarxiv icon

Toxicity Assessment in Preclinical Histopathology via Class-Aware Mahalanobis Distance for Known and Novel Anomalies

Add code
Feb 02, 2026
Viaarxiv icon