Abstract:3D Gaussian Splatting (3DGS) has attracted significant attention for its high-quality novel view rendering, inspiring research to address real-world challenges. While conventional methods depend on sharp images for accurate scene reconstruction, real-world scenarios are often affected by defocus blur due to finite depth of field, making it essential to account for realistic 3D scene representation. In this study, we propose CoCoGaussian, a Circle of Confusion-aware Gaussian Splatting that enables precise 3D scene representation using only defocused images. CoCoGaussian addresses the challenge of defocus blur by modeling the Circle of Confusion (CoC) through a physically grounded approach based on the principles of photographic defocus. Exploiting 3D Gaussians, we compute the CoC diameter from depth and learnable aperture information, generating multiple Gaussians to precisely capture the CoC shape. Furthermore, we introduce a learnable scaling factor to enhance robustness and provide more flexibility in handling unreliable depth in scenes with reflective or refractive surfaces. Experiments on both synthetic and real-world datasets demonstrate that CoCoGaussian achieves state-of-the-art performance across multiple benchmarks.
Abstract:Video inpainting (VI) is a challenging task that requires effective propagation of observable content across frames while simultaneously generating new content not present in the original video. In this study, we propose a robust and practical VI framework that leverages a large generative model for reference generation in combination with an advanced pixel propagation algorithm. Powered by a strong generative model, our method not only significantly enhances frame-level quality for object removal but also synthesizes new content in the missing areas based on user-provided text prompts. For pixel propagation, we introduce a one-shot pixel pulling method that effectively avoids error accumulation from repeated sampling while maintaining sub-pixel precision. To evaluate various VI methods in realistic scenarios, we also propose a high-quality VI benchmark, HQVI, comprising carefully generated videos using alpha matte composition. On public benchmarks and the HQVI dataset, our method demonstrates significantly higher visual quality and metric scores compared to existing solutions. Furthermore, it can process high-resolution videos exceeding 2K resolution with ease, underscoring its superiority for real-world applications.
Abstract:Video monocular depth estimation is essential for applications such as autonomous driving, AR/VR, and robotics. Recent transformer-based single-image monocular depth estimation models perform well on single images but struggle with depth consistency across video frames. Traditional methods aim to improve temporal consistency using multi-frame temporal modules or prior information like optical flow and camera parameters. However, these approaches face issues such as high memory use, reduced performance with dynamic or irregular motion, and limited motion understanding. We propose STATIC, a novel model that independently learns temporal consistency in static and dynamic area without additional information. A difference mask from surface normals identifies static and dynamic area by measuring directional variance. For static area, the Masked Static (MS) module enhances temporal consistency by focusing on stable regions. For dynamic area, the Surface Normal Similarity (SNS) module aligns areas and enhances temporal consistency by measuring feature similarity between frames. A final refinement integrates the independently learned static and dynamic area, enabling STATIC to achieve temporal consistency across the entire sequence. Our method achieves state-of-the-art video depth estimation on the KITTI and NYUv2 datasets without additional information.
Abstract:Open-vocabulary semantic segmentation aims to assign pixel-level labels to images across an unlimited range of classes. Traditional methods address this by sequentially connecting a powerful mask proposal generator, such as the Segment Anything Model (SAM), with a pre-trained vision-language model like CLIP. But these two-stage approaches often suffer from high computational costs, memory inefficiencies. In this paper, we propose ESC-Net, a novel one-stage open-vocabulary segmentation model that leverages the SAM decoder blocks for class-agnostic segmentation within an efficient inference framework. By embedding pseudo prompts generated from image-text correlations into SAM's promptable segmentation framework, ESC-Net achieves refined spatial aggregation for accurate mask predictions. ESC-Net achieves superior performance on standard benchmarks, including ADE20K, PASCAL-VOC, and PASCAL-Context, outperforming prior methods in both efficiency and accuracy. Comprehensive ablation studies further demonstrate its robustness across challenging conditions.
Abstract:In many video processing tasks, leveraging large-scale image datasets is a common strategy, as image data is more abundant and facilitates comprehensive knowledge transfer. A typical approach for simulating video from static images involves applying spatial transformations, such as affine transformations and spline warping, to create sequences that mimic temporal progression. However, in tasks like video salient object detection, where both appearance and motion cues are critical, these basic image-to-video techniques fail to produce realistic optical flows that capture the independent motion properties of each object. In this study, we show that image-to-video diffusion models can generate realistic transformations of static images while understanding the contextual relationships between image components. This ability allows the model to generate plausible optical flows, preserving semantic integrity while reflecting the independent motion of scene elements. By augmenting individual images in this way, we create large-scale image-flow pairs that significantly enhance model training. Our approach achieves state-of-the-art performance across all public benchmark datasets, outperforming existing approaches.
Abstract:Propagation-based video inpainting using optical flow at the pixel or feature level has recently garnered significant attention. However, it has limitations such as the inaccuracy of optical flow prediction and the propagation of noise over time. These issues result in non-uniform noise and time consistency problems throughout the video, which are particularly pronounced when the removed area is large and involves substantial movement. To address these issues, we propose a novel First Frame Filling Video Diffusion Inpainting model (FFF-VDI). We design FFF-VDI inspired by the capabilities of pre-trained image-to-video diffusion models that can transform the first frame image into a highly natural video. To apply this to the video inpainting task, we propagate the noise latent information of future frames to fill the masked areas of the first frame's noise latent code. Next, we fine-tune the pre-trained image-to-video diffusion model to generate the inpainted video. The proposed model addresses the limitations of existing methods that rely on optical flow quality, producing much more natural and temporally consistent videos. This proposed approach is the first to effectively integrate image-to-video diffusion models into video inpainting tasks. Through various comparative experiments, we demonstrate that the proposed model can robustly handle diverse inpainting types with high quality.
Abstract:Neural radiance fields (NeRFs) have received significant attention due to their high-quality novel view rendering ability, prompting research to address various real-world cases. One critical challenge is the camera motion blur caused by camera movement during exposure time, which prevents accurate 3D scene reconstruction. In this study, we propose continuous rigid motion-aware gaussian splatting (CRiM-GS) to reconstruct accurate 3D scene from blurry images with real-time rendering speed. Considering the actual camera motion blurring process, which consists of complex motion patterns, we predict the continuous movement of the camera based on neural ordinary differential equations (ODEs). Specifically, we leverage rigid body transformations to model the camera motion with proper regularization, preserving the shape and size of the object. Furthermore, we introduce a continuous deformable 3D transformation in the \textit{SE(3)} field to adapt the rigid body transformation to real-world problems by ensuring a higher degree of freedom. By revisiting fundamental camera theory and employing advanced neural network training techniques, we achieve accurate modeling of continuous camera trajectories. We conduct extensive experiments, demonstrating state-of-the-art performance both quantitatively and qualitatively on benchmark datasets.
Abstract:Referring Image Segmentation (RIS) aims to segment target objects expressed in natural language within a scene at the pixel level. Various recent RIS models have achieved state-of-the-art performance by generating contextual tokens to model multimodal features from pretrained encoders and effectively fusing them using transformer-based cross-modal attention. While these methods match language features with image features to effectively identify likely target objects, they often struggle to correctly understand contextual information in complex and ambiguous sentences and scenes. To address this issue, we propose a novel bidirectional token-masking autoencoder (BTMAE) inspired by the masked autoencoder (MAE). The proposed model learns the context of image-to-language and language-to-image by reconstructing missing features in both image and language features at the token level. In other words, this approach involves mutually complementing across the features of images and language, with a focus on enabling the network to understand interconnected deep contextual information between the two modalities. This learning method enhances the robustness of RIS performance in complex sentences and scenes. Our BTMAE achieves state-of-the-art performance on three popular datasets, and we demonstrate the effectiveness of the proposed method through various ablation studies.
Abstract:Unsupervised video object segmentation (VOS) is a task that aims to detect the most salient object in a video without external guidance about the object. To leverage the property that salient objects usually have distinctive movements compared to the background, recent methods collaboratively use motion cues extracted from optical flow maps with appearance cues extracted from RGB images. However, as optical flow maps are usually very relevant to segmentation masks, the network is easy to be learned overly dependent on the motion cues during network training. As a result, such two-stream approaches are vulnerable to confusing motion cues, making their prediction unstable. To relieve this issue, we design a novel motion-as-option network by treating motion cues as optional. During network training, RGB images are randomly provided to the motion encoder instead of optical flow maps, to implicitly reduce motion dependency of the network. As the learned motion encoder can deal with both RGB images and optical flow maps, two different predictions can be generated depending on which source information is used as motion input. In order to fully exploit this property, we also propose an adaptive output selection algorithm to adopt optimal prediction result at test time. Our proposed approach affords state-of-the-art performance on all public benchmark datasets, even maintaining real-time inference speed.
Abstract:Salient object detection (SOD) is a task that involves identifying and segmenting the most visually prominent object in an image. Existing solutions can accomplish this use a multi-scale feature fusion mechanism to detect the global context of an image. However, as there is no consideration of the structures in the image nor the relations between distant pixels, conventional methods cannot deal with complex scenes effectively. In this paper, we propose an adaptive graph convolution module (AGCM) to overcome these limitations. Prototype features are initially extracted from the input image using a learnable region generation layer that spatially groups features in the image. The prototype features are then refined by propagating information between them based on a graph architecture, where each feature is regarded as a node. Experimental results show that the proposed AGCM dramatically improves the SOD performance both quantitatively and quantitatively.