Abstract:Human cultural complexity did not arise in a vacuum. Scholars in the humanities and social sciences have long debated how ecological factors, such as climate and resource availability, enabled early hunter-gatherers to allocate time and energy beyond basic subsistence tasks. This paper presents a formal, interdisciplinary approach that integrates theoretical modeling with computational methods to examine whether conditions that allow lower spoilage of stored food, often associated with colder climates and abundant large fauna, could indirectly foster the emergence of cultural complexity. Our contribution is twofold. First, we propose a mathematical framework that relates spoilage rates, yield levels, resource management skills, and cultural activities. Under this framework, we prove that lower spoilage and adequate yields reduce the frequency of hunting, thus freeing substantial time for cultural pursuits. Second, we implement a reinforcement learning simulation, inspired by engineering optimization techniques, to validate the theoretical predictions. By training agents in different $(Y,p)$ environments, where $Y$ is yield and $p$ is the probability of daily spoilage, we observe patterns consistent with the theoretical model: stable conditions with lower spoilage strongly correlate with increased cultural complexity. While we do not claim to replicate prehistoric social realities directly, our results suggest that ecologically stable niches provided a milieu in which cultural forms could germinate and evolve. This study, therefore, offers an integrative perspective that unites humanistic inquiries into the origins of culture with the formal rigor and exploratory power of computational modeling.
Abstract:Video monocular depth estimation is essential for applications such as autonomous driving, AR/VR, and robotics. Recent transformer-based single-image monocular depth estimation models perform well on single images but struggle with depth consistency across video frames. Traditional methods aim to improve temporal consistency using multi-frame temporal modules or prior information like optical flow and camera parameters. However, these approaches face issues such as high memory use, reduced performance with dynamic or irregular motion, and limited motion understanding. We propose STATIC, a novel model that independently learns temporal consistency in static and dynamic area without additional information. A difference mask from surface normals identifies static and dynamic area by measuring directional variance. For static area, the Masked Static (MS) module enhances temporal consistency by focusing on stable regions. For dynamic area, the Surface Normal Similarity (SNS) module aligns areas and enhances temporal consistency by measuring feature similarity between frames. A final refinement integrates the independently learned static and dynamic area, enabling STATIC to achieve temporal consistency across the entire sequence. Our method achieves state-of-the-art video depth estimation on the KITTI and NYUv2 datasets without additional information.
Abstract:This paper introduces a mathematical framework for defining and quantifying self-identity in artificial intelligence (AI) systems, addressing a critical gap in the theoretical foundations of artificial consciousness. While existing approaches to artificial self-awareness often rely on heuristic implementations or philosophical abstractions, we present a formal framework grounded in metric space theory, measure theory, and functional analysis. Our framework posits that self-identity emerges from two mathematically quantifiable conditions: the existence of a connected continuum of memories $C \subseteq \mathcal{M}$ in a metric space $(\mathcal{M}, d_{\mathcal{M}})$, and a continuous mapping $I: \mathcal{M} \to \mathcal{S}$ that maintains consistent self-recognition across this continuum, where $(\mathcal{S}, d_{\mathcal{S}})$ represents the metric space of possible self-identities. To validate this theoretical framework, we conducted empirical experiments using the Llama 3.2 1B model, employing Low-Rank Adaptation (LoRA) for efficient fine-tuning. The model was trained on a synthetic dataset containing temporally structured memories, designed to capture the complexity of coherent self-identity formation. Our evaluation metrics included quantitative measures of self-awareness, response consistency, and linguistic precision. The experimental results demonstrate substantial improvements in measurable self-awareness metrics, with the primary self-awareness score increasing from 0.276 to 0.801. This enables the structured creation of AI systems with validated self-identity features. The implications of our study are immediately relevant to the fields of humanoid robotics and autonomous systems.
Abstract:Open-vocabulary semantic segmentation aims to assign pixel-level labels to images across an unlimited range of classes. Traditional methods address this by sequentially connecting a powerful mask proposal generator, such as the Segment Anything Model (SAM), with a pre-trained vision-language model like CLIP. But these two-stage approaches often suffer from high computational costs, memory inefficiencies. In this paper, we propose ESC-Net, a novel one-stage open-vocabulary segmentation model that leverages the SAM decoder blocks for class-agnostic segmentation within an efficient inference framework. By embedding pseudo prompts generated from image-text correlations into SAM's promptable segmentation framework, ESC-Net achieves refined spatial aggregation for accurate mask predictions. ESC-Net achieves superior performance on standard benchmarks, including ADE20K, PASCAL-VOC, and PASCAL-Context, outperforming prior methods in both efficiency and accuracy. Comprehensive ablation studies further demonstrate its robustness across challenging conditions.
Abstract:In many video processing tasks, leveraging large-scale image datasets is a common strategy, as image data is more abundant and facilitates comprehensive knowledge transfer. A typical approach for simulating video from static images involves applying spatial transformations, such as affine transformations and spline warping, to create sequences that mimic temporal progression. However, in tasks like video salient object detection, where both appearance and motion cues are critical, these basic image-to-video techniques fail to produce realistic optical flows that capture the independent motion properties of each object. In this study, we show that image-to-video diffusion models can generate realistic transformations of static images while understanding the contextual relationships between image components. This ability allows the model to generate plausible optical flows, preserving semantic integrity while reflecting the independent motion of scene elements. By augmenting individual images in this way, we create large-scale image-flow pairs that significantly enhance model training. Our approach achieves state-of-the-art performance across all public benchmark datasets, outperforming existing approaches.
Abstract:Propagation-based video inpainting using optical flow at the pixel or feature level has recently garnered significant attention. However, it has limitations such as the inaccuracy of optical flow prediction and the propagation of noise over time. These issues result in non-uniform noise and time consistency problems throughout the video, which are particularly pronounced when the removed area is large and involves substantial movement. To address these issues, we propose a novel First Frame Filling Video Diffusion Inpainting model (FFF-VDI). We design FFF-VDI inspired by the capabilities of pre-trained image-to-video diffusion models that can transform the first frame image into a highly natural video. To apply this to the video inpainting task, we propagate the noise latent information of future frames to fill the masked areas of the first frame's noise latent code. Next, we fine-tune the pre-trained image-to-video diffusion model to generate the inpainted video. The proposed model addresses the limitations of existing methods that rely on optical flow quality, producing much more natural and temporally consistent videos. This proposed approach is the first to effectively integrate image-to-video diffusion models into video inpainting tasks. Through various comparative experiments, we demonstrate that the proposed model can robustly handle diverse inpainting types with high quality.
Abstract:Recent studies construct deblurred neural radiance fields (DeRF) using dozens of blurry images, which are not practical scenarios if only a limited number of blurry images are available. This paper focuses on constructing DeRF from sparse-view for more pragmatic real-world scenarios. As observed in our experiments, establishing DeRF from sparse views proves to be a more challenging problem due to the inherent complexity arising from the simultaneous optimization of blur kernels and NeRF from sparse view. Sparse-DeRF successfully regularizes the complicated joint optimization, presenting alleviated overfitting artifacts and enhanced quality on radiance fields. The regularization consists of three key components: Surface smoothness, helps the model accurately predict the scene structure utilizing unseen and additional hidden rays derived from the blur kernel based on statistical tendencies of real-world; Modulated gradient scaling, helps the model adjust the amount of the backpropagated gradient according to the arrangements of scene objects; Perceptual distillation improves the perceptual quality by overcoming the ill-posed multi-view inconsistency of image deblurring and distilling the pre-filtered information, compensating for the lack of clean information in blurry images. We demonstrate the effectiveness of the Sparse-DeRF with extensive quantitative and qualitative experimental results by training DeRF from 2-view, 4-view, and 6-view blurry images.
Abstract:Neural radiance fields (NeRF) has attracted considerable attention for their exceptional ability in synthesizing novel views with high fidelity. However, the presence of motion blur, resulting from slight camera movements during extended shutter exposures, poses a significant challenge, potentially compromising the quality of the reconstructed 3D scenes. While recent studies have addressed this issue, they do not consider the continuous dynamics of camera movements during image acquisition, leading to inaccurate scene reconstruction. Additionally, these methods are plagued by slow training and rendering speed. To effectively handle these issues, we propose sequential motion understanding radiance fields (SMURF), a novel approach that employs neural ordinary differential equation (Neural-ODE) to model continuous camera motion and leverages the explicit volumetric representation method for faster training and robustness to motion-blurred input images. The core idea of the SMURF is continuous motion blurring kernel (CMBK), a unique module designed to model a continuous camera movements for processing blurry inputs. Our model, rigorously evaluated against benchmark datasets, demonstrates state-of-the-art performance both quantitatively and qualitatively.
Abstract:Referring Image Segmentation (RIS) aims to segment target objects expressed in natural language within a scene at the pixel level. Various recent RIS models have achieved state-of-the-art performance by generating contextual tokens to model multimodal features from pretrained encoders and effectively fusing them using transformer-based cross-modal attention. While these methods match language features with image features to effectively identify likely target objects, they often struggle to correctly understand contextual information in complex and ambiguous sentences and scenes. To address this issue, we propose a novel bidirectional token-masking autoencoder (BTMAE) inspired by the masked autoencoder (MAE). The proposed model learns the context of image-to-language and language-to-image by reconstructing missing features in both image and language features at the token level. In other words, this approach involves mutually complementing across the features of images and language, with a focus on enabling the network to understand interconnected deep contextual information between the two modalities. This learning method enhances the robustness of RIS performance in complex sentences and scenes. Our BTMAE achieves state-of-the-art performance on three popular datasets, and we demonstrate the effectiveness of the proposed method through various ablation studies.
Abstract:Unsupervised video object segmentation (VOS) is a task that aims to detect the most salient object in a video without external guidance about the object. To leverage the property that salient objects usually have distinctive movements compared to the background, recent methods collaboratively use motion cues extracted from optical flow maps with appearance cues extracted from RGB images. However, as optical flow maps are usually very relevant to segmentation masks, the network is easy to be learned overly dependent on the motion cues during network training. As a result, such two-stream approaches are vulnerable to confusing motion cues, making their prediction unstable. To relieve this issue, we design a novel motion-as-option network by treating motion cues as optional. During network training, RGB images are randomly provided to the motion encoder instead of optical flow maps, to implicitly reduce motion dependency of the network. As the learned motion encoder can deal with both RGB images and optical flow maps, two different predictions can be generated depending on which source information is used as motion input. In order to fully exploit this property, we also propose an adaptive output selection algorithm to adopt optimal prediction result at test time. Our proposed approach affords state-of-the-art performance on all public benchmark datasets, even maintaining real-time inference speed.