Abstract:Propagation-based video inpainting using optical flow at the pixel or feature level has recently garnered significant attention. However, it has limitations such as the inaccuracy of optical flow prediction and the propagation of noise over time. These issues result in non-uniform noise and time consistency problems throughout the video, which are particularly pronounced when the removed area is large and involves substantial movement. To address these issues, we propose a novel First Frame Filling Video Diffusion Inpainting model (FFF-VDI). We design FFF-VDI inspired by the capabilities of pre-trained image-to-video diffusion models that can transform the first frame image into a highly natural video. To apply this to the video inpainting task, we propagate the noise latent information of future frames to fill the masked areas of the first frame's noise latent code. Next, we fine-tune the pre-trained image-to-video diffusion model to generate the inpainted video. The proposed model addresses the limitations of existing methods that rely on optical flow quality, producing much more natural and temporally consistent videos. This proposed approach is the first to effectively integrate image-to-video diffusion models into video inpainting tasks. Through various comparative experiments, we demonstrate that the proposed model can robustly handle diverse inpainting types with high quality.
Abstract:Recent studies construct deblurred neural radiance fields (DeRF) using dozens of blurry images, which are not practical scenarios if only a limited number of blurry images are available. This paper focuses on constructing DeRF from sparse-view for more pragmatic real-world scenarios. As observed in our experiments, establishing DeRF from sparse views proves to be a more challenging problem due to the inherent complexity arising from the simultaneous optimization of blur kernels and NeRF from sparse view. Sparse-DeRF successfully regularizes the complicated joint optimization, presenting alleviated overfitting artifacts and enhanced quality on radiance fields. The regularization consists of three key components: Surface smoothness, helps the model accurately predict the scene structure utilizing unseen and additional hidden rays derived from the blur kernel based on statistical tendencies of real-world; Modulated gradient scaling, helps the model adjust the amount of the backpropagated gradient according to the arrangements of scene objects; Perceptual distillation improves the perceptual quality by overcoming the ill-posed multi-view inconsistency of image deblurring and distilling the pre-filtered information, compensating for the lack of clean information in blurry images. We demonstrate the effectiveness of the Sparse-DeRF with extensive quantitative and qualitative experimental results by training DeRF from 2-view, 4-view, and 6-view blurry images.
Abstract:Neural radiance fields (NeRF) has attracted considerable attention for their exceptional ability in synthesizing novel views with high fidelity. However, the presence of motion blur, resulting from slight camera movements during extended shutter exposures, poses a significant challenge, potentially compromising the quality of the reconstructed 3D scenes. While recent studies have addressed this issue, they do not consider the continuous dynamics of camera movements during image acquisition, leading to inaccurate scene reconstruction. Additionally, these methods are plagued by slow training and rendering speed. To effectively handle these issues, we propose sequential motion understanding radiance fields (SMURF), a novel approach that employs neural ordinary differential equation (Neural-ODE) to model continuous camera motion and leverages the explicit volumetric representation method for faster training and robustness to motion-blurred input images. The core idea of the SMURF is continuous motion blurring kernel (CMBK), a unique module designed to model a continuous camera movements for processing blurry inputs. Our model, rigorously evaluated against benchmark datasets, demonstrates state-of-the-art performance both quantitatively and qualitatively.
Abstract:Referring Image Segmentation (RIS) aims to segment target objects expressed in natural language within a scene at the pixel level. Various recent RIS models have achieved state-of-the-art performance by generating contextual tokens to model multimodal features from pretrained encoders and effectively fusing them using transformer-based cross-modal attention. While these methods match language features with image features to effectively identify likely target objects, they often struggle to correctly understand contextual information in complex and ambiguous sentences and scenes. To address this issue, we propose a novel bidirectional token-masking autoencoder (BTMAE) inspired by the masked autoencoder (MAE). The proposed model learns the context of image-to-language and language-to-image by reconstructing missing features in both image and language features at the token level. In other words, this approach involves mutually complementing across the features of images and language, with a focus on enabling the network to understand interconnected deep contextual information between the two modalities. This learning method enhances the robustness of RIS performance in complex sentences and scenes. Our BTMAE achieves state-of-the-art performance on three popular datasets, and we demonstrate the effectiveness of the proposed method through various ablation studies.
Abstract:Bayesian optimization (BO) has emerged as a potent tool for addressing intricate decision-making challenges, especially in public policy domains such as police districting. However, its broader application in public policymaking is hindered by the complexity of defining feasible regions and the high-dimensionality of decisions. This paper introduces the Hidden-Constrained Latent Space Bayesian Optimization (HC-LSBO), a novel BO method integrated with a latent decision model. This approach leverages a variational autoencoder to learn the distribution of feasible decisions, enabling a two-way mapping between the original decision space and a lower-dimensional latent space. By doing so, HC-LSBO captures the nuances of hidden constraints inherent in public policymaking, allowing for optimization in the latent space while evaluating objectives in the original space. We validate our method through numerical experiments on both synthetic and real data sets, with a specific focus on large-scale police districting problems in Atlanta, Georgia. Our results reveal that HC-LSBO offers notable improvements in performance and efficiency compared to the baselines.
Abstract:In general, hand pose estimation aims to improve the robustness of model performance in the real-world scenes. However, it is difficult to enhance the robustness since existing datasets are obtained in restricted environments to annotate 3D information. Although neural networks quantitatively achieve a high estimation accuracy, unsatisfied results can be observed in visual quality. This discrepancy between quantitative results and their visual qualities remains an open issue in the hand pose representation. To this end, we propose a mesh represented recycle learning strategy for 3D hand pose and mesh estimation which reinforces synthesized hand mesh representation in a training phase. To be specific, a hand pose and mesh estimation model first predicts parametric 3D hand annotations (i.e., 3D keypoint positions and vertices for hand mesh) with real-world hand images in the training phase. Second, synthetic hand images are generated with self-estimated hand mesh representations. After that, the synthetic hand images are fed into the same model again. Thus, the proposed learning strategy simultaneously improves quantitative results and visual qualities by reinforcing synthetic mesh representation. To encourage consistency between original model output and its recycled one, we propose self-correlation loss which maximizes the accuracy and reliability of our learning strategy. Consequently, the model effectively conducts self-refinement on hand pose estimation by learning mesh representation from its own output. To demonstrate the effectiveness of our learning strategy, we provide extensive experiments on FreiHAND dataset. Notably, our learning strategy improves the performance on hand pose and mesh estimation without any extra computational burden during the inference.
Abstract:Unsupervised video object segmentation (VOS) is a task that aims to detect the most salient object in a video without external guidance about the object. To leverage the property that salient objects usually have distinctive movements compared to the background, recent methods collaboratively use motion cues extracted from optical flow maps with appearance cues extracted from RGB images. However, as optical flow maps are usually very relevant to segmentation masks, the network is easy to be learned overly dependent on the motion cues during network training. As a result, such two-stream approaches are vulnerable to confusing motion cues, making their prediction unstable. To relieve this issue, we design a novel motion-as-option network by treating motion cues as optional. During network training, RGB images are randomly provided to the motion encoder instead of optical flow maps, to implicitly reduce motion dependency of the network. As the learned motion encoder can deal with both RGB images and optical flow maps, two different predictions can be generated depending on which source information is used as motion input. In order to fully exploit this property, we also propose an adaptive output selection algorithm to adopt optimal prediction result at test time. Our proposed approach affords state-of-the-art performance on all public benchmark datasets, even maintaining real-time inference speed.
Abstract:In general, human pose estimation methods are categorized into two approaches according to their architectures: regression (i.e., heatmap-free) and heatmap-based methods. The former one directly estimates precise coordinates of each keypoint using convolutional and fully-connected layers. Although this approach is able to detect overlapped and dense keypoints, unexpected results can be obtained by non-existent keypoints in a scene. On the other hand, the latter one is able to filter the non-existent ones out by utilizing predicted heatmaps for each keypoint. Nevertheless, it suffers from quantization error when obtaining the keypoint coordinates from its heatmaps. In addition, unlike the regression one, it is difficult to distinguish densely placed keypoints in an image. To this end, we propose a hybrid model for single-stage multi-person pose estimation, named HybridPose, which mutually overcomes each drawback of both approaches by maximizing their strengths. Furthermore, we introduce self-correlation loss to inject spatial dependencies between keypoint coordinates and their visibility. Therefore, HybridPose is capable of not only detecting densely placed keypoints, but also filtering the non-existent keypoints in an image. Experimental results demonstrate that proposed HybridPose exhibits the keypoints visibility without performance degradation in terms of the pose estimation accuracy.
Abstract:Unsupervised video object segmentation aims to segment the most prominent object in a video sequence. However, the existence of complex backgrounds and multiple foreground objects make this task challenging. To address this issue, we propose a guided slot attention network to reinforce spatial structural information and obtain better foreground--background separation. The foreground and background slots, which are initialized with query guidance, are iteratively refined based on interactions with template information. Furthermore, to improve slot--template interaction and effectively fuse global and local features in the target and reference frames, K-nearest neighbors filtering and a feature aggregation transformer are introduced. The proposed model achieves state-of-the-art performance on two popular datasets. Additionally, we demonstrate the robustness of the proposed model in challenging scenes through various comparative experiments.
Abstract:Skeleton-based action recognition has attracted considerable attention due to its compact skeletal structure of the human body. Many recent methods have achieved remarkable performance using graph convolutional networks (GCNs) and convolutional neural networks (CNNs), which extract spatial and temporal features, respectively. Although spatial and temporal dependencies in the human skeleton have been explored, spatio-temporal dependency is rarely considered. In this paper, we propose the Inter-Frame Curve Network (IFC-Net) to effectively leverage the spatio-temporal dependency of the human skeleton. Our proposed network consists of two novel elements: 1) The Inter-Frame Curve (IFC) module; and 2) Dilated Graph Convolution (D-GC). The IFC module increases the spatio-temporal receptive field by identifying meaningful node connections between every adjacent frame and generating spatio-temporal curves based on the identified node connections. The D-GC allows the network to have a large spatial receptive field, which specifically focuses on the spatial domain. The kernels of D-GC are computed from the given adjacency matrices of the graph and reflect large receptive field in a way similar to the dilated CNNs. Our IFC-Net combines these two modules and achieves state-of-the-art performance on three skeleton-based action recognition benchmarks: NTU-RGB+D 60, NTU-RGB+D 120, and Northwestern-UCLA.