3D instance segmentation is the process of identifying and segmenting individual objects in 3D point clouds or scenes.
Perception is a cornerstone of autonomous driving, enabling vehicles to understand their surroundings and make safe, reliable decisions. Developing robust perception algorithms requires large-scale, high-quality datasets that cover diverse driving conditions and support thorough evaluation. Existing datasets often lack a high-fidelity digital twin, limiting systematic testing, edge-case simulation, sensor modification, and sim-to-real evaluations. To address this gap, we present DrivIng, a large-scale multimodal dataset with a complete geo-referenced digital twin of a ~18 km route spanning urban, suburban, and highway segments. Our dataset provides continuous recordings from six RGB cameras, one LiDAR, and high-precision ADMA-based localization, captured across day, dusk, and night. All sequences are annotated at 10 Hz with 3D bounding boxes and track IDs across 12 classes, yielding ~1.2 million annotated instances. Alongside the benefits of a digital twin, DrivIng enables a 1-to-1 transfer of real traffic into simulation, preserving agent interactions while enabling realistic and flexible scenario testing. To support reproducible research and robust validation, we benchmark DrivIng with state-of-the-art perception models and publicly release the dataset, digital twin, HD map, and codebase.
This paper presents a novel cross-modal visuo-tactile perception framework for the 3D shape reconstruction of deformable linear objects (DLOs), with a specific focus on cables subject to severe visual occlusions. Unlike existing methods relying predominantly on vision, whose performance degrades under varying illumination, background clutter, or partial visibility, the proposed approach integrates foundation-model-based visual perception with adaptive tactile exploration. The visual pipeline exploits SAM for instance segmentation and Florence for semantic refinement, followed by skeletonization, endpoint detection, and point-cloud extraction. Occluded cable segments are autonomously identified and explored with a tactile sensor, which provides local point clouds that are merged with the visual data through Euclidean clustering and topology-preserving fusion. A B-spline interpolation driven by endpoint-guided point sorting yields a smooth and complete reconstruction of the cable shape. Experimental validation using a robotic manipulator equipped with an RGB-D camera and a tactile pad demonstrates that the proposed framework accurately reconstructs both simple and highly curved single or multiple cable configurations, even when large portions are occluded. These results highlight the potential of foundation-model-enhanced cross-modal perception for advancing robotic manipulation of deformable objects.
Accurate instance-level segmentation of organelles in electron microscopy (EM) is critical for quantitative analysis of subcellular morphology and inter-organelle interactions. However, current benchmarks, based on small, curated datasets, fail to capture the inherent heterogeneity and large spatial context of in-the-wild EM data, imposing fundamental limitations on current patch-based methods. To address these limitations, we developed a large-scale, multi-source benchmark for multi-organelle instance segmentation, comprising over 100,000 2D EM images across variety cell types and five organelle classes that capture real-world variability. Dataset annotations were generated by our designed connectivity-aware Label Propagation Algorithm (3D LPA) with expert refinement. We further benchmarked several state-of-the-art models, including U-Net, SAM variants, and Mask2Former. Our results show several limitations: current models struggle to generalize across heterogeneous EM data and perform poorly on organelles with global, distributed morphologies (e.g., Endoplasmic Reticulum). These findings underscore the fundamental mismatch between local-context models and the challenge of modeling long-range structural continuity in the presence of real-world variability. The benchmark dataset and labeling tool will be publicly released soon.
Indoor environments evolve as objects move, appear, or disappear. Capturing these dynamics requires maintaining temporally consistent instance identities across intermittently captured 3D scans, even when changes are unobserved. We introduce and formalize the task of temporally sparse 4D indoor semantic instance segmentation (SIS), which jointly segments, identifies, and temporally associates object instances. This setting poses a challenge for existing 3DSIS methods, which require a discrete matching step due to their lack of temporal reasoning, and for 4D LiDAR approaches, which perform poorly due to their reliance on high-frequency temporal measurements that are uncommon in the longer-horizon evolution of indoor environments. We propose ReScene4D, a novel method that adapts 3DSIS architectures for 4DSIS without needing dense observations. It explores strategies to share information across observations, demonstrating that this shared context not only enables consistent instance tracking but also improves standard 3DSIS quality. To evaluate this task, we define a new metric, t-mAP, that extends mAP to reward temporal identity consistency. ReScene4D achieves state-of-the-art performance on the 3RScan dataset, establishing a new benchmark for understanding evolving indoor scenes.
The task of 6DoF object pose estimation is one of the fundamental problems of 3D vision with many practical applications such as industrial automation. Traditional deep learning approaches for this task often require extensive training data or CAD models, limiting their application in real-world industrial settings where data is scarce and object instances vary. We propose a novel method for 6DoF pose estimation focused specifically on bins used in industrial settings. We exploit the cuboid geometry of bins by first detecting intermediate 3D line segments corresponding to their top edges. Our approach extends the 2D line segment detection network LeTR to operate on structured point cloud data. The detected 3D line segments are then processed using a simple geometric procedure to robustly determine the bin's 6DoF pose. To evaluate our method, we extend an existing dataset with a newly collected and annotated dataset, which we make publicly available. We show that incorporating synthetic training data significantly improves pose estimation accuracy on real scans. Moreover, we show that our method significantly outperforms current state-of-the-art 6DoF pose estimation methods in terms of the pose accuracy (3 cm translation error, 8.2$^\circ$ rotation error) while not requiring instance-specific CAD models during inference.
Video object segmentation methods like SAM2 achieve strong performance through memory-based architectures but struggle under large viewpoint changes due to reliance on appearance features. Traditional 3D instance segmentation methods address viewpoint consistency but require camera poses, depth maps, and expensive preprocessing. We introduce 3AM, a training-time enhancement that integrates 3D-aware features from MUSt3R into SAM2. Our lightweight Feature Merger fuses multi-level MUSt3R features that encode implicit geometric correspondence. Combined with SAM2's appearance features, the model achieves geometry-consistent recognition grounded in both spatial position and visual similarity. We propose a field-of-view aware sampling strategy ensuring frames observe spatially consistent object regions for reliable 3D correspondence learning. Critically, our method requires only RGB input at inference, with no camera poses or preprocessing. On challenging datasets with wide-baseline motion (ScanNet++, Replica), 3AM substantially outperforms SAM2 and extensions, achieving 90.6% IoU and 71.7% Positive IoU on ScanNet++'s Selected Subset, improving over state-of-the-art VOS methods by +15.9 and +30.4 points. Project page: https://jayisaking.github.io/3AM-Page/
Monocular 3D object detection offers a low-cost alternative to LiDAR, yet remains less accurate due to the difficulty of estimating metric depth from a single image. We systematically evaluate how depth backbones and feature engineering affect a monocular Pseudo-LiDAR pipeline on the KITTI validation split. Specifically, we compare NeWCRFs (supervised metric depth) against Depth Anything V2 Metric-Outdoor (Base) under an identical pseudo-LiDAR generation and PointRCNN detection protocol. NeWCRFs yields stronger downstream 3D detection, achieving 10.50\% AP$_{3D}$ at IoU$=0.7$ on the Moderate split using grayscale intensity (Exp~2). We further test point-cloud augmentations using appearance cues (grayscale intensity) and semantic cues (instance segmentation confidence). Contrary to the expectation that semantics would substantially close the gap, these features provide only marginal gains, and mask-based sampling can degrade performance by removing contextual geometry. Finally, we report a depth-accuracy-versus-distance diagnostic using ground-truth 2D boxes (including Ped/Cyc), highlighting that coarse depth correctness does not fully predict strict 3D IoU. Overall, under an off-the-shelf LiDAR detector, depth-backbone choice and geometric fidelity dominate performance, outweighing secondary feature injection.
3D Gaussian Splatting (3DGS) and Neural Radiance Fields (NeRF) have advanced novel-view synthesis. Recent methods extend multi-view 2D segmentation to 3D, enabling instance/semantic segmentation for better scene understanding. A key challenge is the inconsistency of 2D instance labels across views, leading to poor 3D predictions. Existing methods use a two-stage approach in which some rely on contrastive learning with hyperparameter-sensitive clustering, while others preprocess labels for consistency. We propose a unified framework that merges these steps, reducing training time and improving performance by introducing a learnable feature embedding for segmentation in Gaussian primitives. This embedding is then efficiently decoded into instance labels through a novel "Embedding-to-Label" process, effectively integrating the optimization. While this unified framework offers substantial benefits, we observed artifacts at the object boundaries. To address the object boundary issues, we propose hard-mining samples along these boundaries. However, directly applying hard mining to the feature embeddings proved unstable. Therefore, we apply a linear layer to the rasterized feature embeddings before calculating the triplet loss, which stabilizes training and significantly improves performance. Our method outperforms baselines qualitatively and quantitatively on the ScanNet, Replica3D, and Messy-Rooms datasets.
Rigorous crop counting is crucial for effective agricultural management and informed intervention strategies. However, in outdoor field environments, partial occlusions combined with inherent ambiguity in distinguishing clustered crops from individual viewpoints poses an immense challenge for image-based segmentation methods. To address these problems, we introduce a novel crop counting framework designed for exact enumeration via 3D instance segmentation. Our approach utilizes 2D images captured from multiple viewpoints and associates independent instance masks for neural radiance field (NeRF) view synthesis. We introduce crop visibility and mask consistency scores, which are incorporated alongside 3D information from a NeRF model. This results in an effective segmentation of crop instances in 3D and highly-accurate crop counts. Furthermore, our method eliminates the dependence on crop-specific parameter tuning. We validate our framework on three agricultural datasets consisting of cotton bolls, apples, and pears, and demonstrate consistent counting performance despite major variations in crop color, shape, and size. A comparative analysis against the state of the art highlights superior performance on crop counting tasks. Lastly, we contribute a cotton plant dataset to advance further research on this topic.
Three-dimensional (3D) tooth instance segmentation remains challenging due to crowded arches, ambiguous tooth-gingiva boundaries, missing teeth, and rare yet clinically important third molars. Native 3D methods relying on geometric cues often suffer from boundary leakage, center drift, and inconsistent tooth identities, especially for minority classes and complex anatomies. Meanwhile, 2D foundation models such as the Segment Anything Model (SAM) provide strong boundary-aware semantics, but directly applying them in 3D is impractical in clinical workflows. To address these issues, we propose SOFTooth, a semantics-enhanced, order-aware 2D-3D fusion framework that leverages frozen 2D semantics without explicit 2D mask supervision. First, a point-wise residual gating module injects occlusal-view SAM embeddings into 3D point features to refine tooth-gingiva and inter-tooth boundaries. Second, a center-guided mask refinement regularizes consistency between instance masks and geometric centroids, reducing center drift. Furthermore, an order-aware Hungarian matching strategy integrates anatomical tooth order and center distance into similarity-based assignment, ensuring coherent labeling even under missing or crowded dentitions. On 3DTeethSeg'22, SOFTooth achieves state-of-the-art overall accuracy and mean IoU, with clear gains on cases involving third molars, demonstrating that rich 2D semantics can be effectively transferred to 3D tooth instance segmentation without 2D fine-tuning.