Abstract:With the rapid development of AI-generated content, the future internet may be inundated with synthetic data, making the discrimination of authentic and credible multimodal data increasingly challenging. Synthetic data detection has thus garnered widespread attention, and the performance of large multimodal models (LMMs) in this task has attracted significant interest. LMMs can provide natural language explanations for their authenticity judgments, enhancing the explainability of synthetic content detection. Simultaneously, the task of distinguishing between real and synthetic data effectively tests the perception, knowledge, and reasoning capabilities of LMMs. In response, we introduce LOKI, a novel benchmark designed to evaluate the ability of LMMs to detect synthetic data across multiple modalities. LOKI encompasses video, image, 3D, text, and audio modalities, comprising 18K carefully curated questions across 26 subcategories with clear difficulty levels. The benchmark includes coarse-grained judgment and multiple-choice questions, as well as fine-grained anomaly selection and explanation tasks, allowing for a comprehensive analysis of LMMs. We evaluated 22 open-source LMMs and 6 closed-source models on LOKI, highlighting their potential as synthetic data detectors and also revealing some limitations in the development of LMM capabilities. More information about LOKI can be found at https://opendatalab.github.io/LOKI/
Abstract:We present a novel direction-aware feature-level frequency decomposition network for single image deraining. Compared with existing solutions, the proposed network has three compelling characteristics. First, unlike previous algorithms, we propose to perform frequency decomposition at feature-level instead of image-level, allowing both low-frequency maps containing structures and high-frequency maps containing details to be continuously refined during the training procedure. Second, we further establish communication channels between low-frequency maps and high-frequency maps to interactively capture structures from high-frequency maps and add them back to low-frequency maps and, simultaneously, extract details from low-frequency maps and send them back to high-frequency maps, thereby removing rain streaks while preserving more delicate features in the input image. Third, different from existing algorithms using convolutional filters consistent in all directions, we propose a direction-aware filter to capture the direction of rain streaks in order to more effectively and thoroughly purge the input images of rain streaks. We extensively evaluate the proposed approach in three representative datasets and experimental results corroborate our approach consistently outperforms state-of-the-art deraining algorithms.
Abstract:Middle-echo, which covers one or a few corresponding points, is a specific type of 3D point cloud acquired by a multi-echo laser scanner. In this paper, we propose a novel approach for automatic segmentation of trees that leverages middle-echo information from LiDAR point clouds. First, using a convolution classification method, the proposed type of point clouds reflected by the middle echoes are identified from all point clouds. The middle-echo point clouds are distinguished from the first and last echoes. Hence, the crown positions of the trees are quickly detected from the huge number of point clouds. Second, to accurately extract trees from all point clouds, we propose a 3D deep learning network, PointNLM, to semantically segment tree crowns. PointNLM captures the long-range relationship between the point clouds via a non-local branch and extracts high-level features via max-pooling applied to unordered points. The whole framework is evaluated using the Semantic 3D reduced-test set. The IoU of tree point cloud segmentation reached 0.864. In addition, the semantic segmentation network was tested using the Paris-Lille-3D dataset. The average IoU outperformed several other popular methods. The experimental results indicate that the proposed algorithm provides an excellent solution for vegetation segmentation from LiDAR point clouds.
Abstract:It is widely recognized that the deeper networks or networks with more feature maps have better performance. Existing studies mainly focus on extending the network depth and increasing the feature maps of networks. At the same time, horizontal expansion network (e.g. Inception Model) as an alternative way to improve network performance has not been fully investigated. Accordingly, we proposed NeuroTreeNet (NTN), as a new horizontal extension network through the combination of random forest and Inception Model. Based on the tree structure, in which each branch represents a network and the root node features are shared to child nodes, network parameters are effectively reduced. By combining all features of leaf nodes, even less feature maps achieved better performance. In addition, the relationship between tree structure and the performance of NTN was investigated in depth. Comparing to other networks (e.g. VDSR\_5) with equal magnitude parameters, our model showed preferable performance in super resolution reconstruction task.
Abstract:This paper deals with the geometric multi-model fitting from noisy, unstructured point set data (e.g., laser scanned point clouds). We formulate multi-model fitting problem as a sequential decision making process. We then use a deep reinforcement learning algorithm to learn the optimal decisions towards the best fitting result. In this paper, we have compared our method against the state-of-the-art on simulated data. The results demonstrated that our approach significantly reduced the number of fitting iterations.