Picture for Susan M. Resnick

Susan M. Resnick

from the iSTAGING consortium, for the ADNI

Brain age identification from diffusion MRI synergistically predicts neurodegenerative disease

Add code
Oct 29, 2024
Viaarxiv icon

Predicting Age from White Matter Diffusivity with Residual Learning

Add code
Nov 06, 2023
Viaarxiv icon

Rapid Brain Meninges Surface Reconstruction with Layer Topology Guarantee

Add code
Apr 13, 2023
Viaarxiv icon

Gene-SGAN: a method for discovering disease subtypes with imaging and genetic signatures via multi-view weakly-supervised deep clustering

Add code
Jan 25, 2023
Figure 1 for Gene-SGAN: a method for discovering disease subtypes with imaging and genetic signatures via multi-view weakly-supervised deep clustering
Figure 2 for Gene-SGAN: a method for discovering disease subtypes with imaging and genetic signatures via multi-view weakly-supervised deep clustering
Figure 3 for Gene-SGAN: a method for discovering disease subtypes with imaging and genetic signatures via multi-view weakly-supervised deep clustering
Viaarxiv icon

HACA3: A Unified Approach for Multi-site MR Image Harmonization

Add code
Dec 12, 2022
Viaarxiv icon

Disentangling A Single MR Modality

Add code
May 10, 2022
Figure 1 for Disentangling A Single MR Modality
Figure 2 for Disentangling A Single MR Modality
Figure 3 for Disentangling A Single MR Modality
Figure 4 for Disentangling A Single MR Modality
Viaarxiv icon

Multidimensional representations in late-life depression: convergence in neuroimaging, cognition, clinical symptomatology and genetics

Add code
Oct 25, 2021
Figure 1 for Multidimensional representations in late-life depression: convergence in neuroimaging, cognition, clinical symptomatology and genetics
Figure 2 for Multidimensional representations in late-life depression: convergence in neuroimaging, cognition, clinical symptomatology and genetics
Figure 3 for Multidimensional representations in late-life depression: convergence in neuroimaging, cognition, clinical symptomatology and genetics
Figure 4 for Multidimensional representations in late-life depression: convergence in neuroimaging, cognition, clinical symptomatology and genetics
Viaarxiv icon

Disentangling Alzheimer's disease neurodegeneration from typical brain aging using machine learning

Add code
Sep 08, 2021
Figure 1 for Disentangling Alzheimer's disease neurodegeneration from typical brain aging using machine learning
Figure 2 for Disentangling Alzheimer's disease neurodegeneration from typical brain aging using machine learning
Figure 3 for Disentangling Alzheimer's disease neurodegeneration from typical brain aging using machine learning
Figure 4 for Disentangling Alzheimer's disease neurodegeneration from typical brain aging using machine learning
Viaarxiv icon

Disentangling brain heterogeneity via semi-supervised deep-learning and MRI: dimensional representations of Alzheimer's Disease

Add code
Feb 24, 2021
Figure 1 for Disentangling brain heterogeneity via semi-supervised deep-learning and MRI: dimensional representations of Alzheimer's Disease
Figure 2 for Disentangling brain heterogeneity via semi-supervised deep-learning and MRI: dimensional representations of Alzheimer's Disease
Figure 3 for Disentangling brain heterogeneity via semi-supervised deep-learning and MRI: dimensional representations of Alzheimer's Disease
Figure 4 for Disentangling brain heterogeneity via semi-supervised deep-learning and MRI: dimensional representations of Alzheimer's Disease
Viaarxiv icon

Medical Image Harmonization Using Deep Learning Based Canonical Mapping: Toward Robust and Generalizable Learning in Imaging

Add code
Oct 11, 2020
Figure 1 for Medical Image Harmonization Using Deep Learning Based Canonical Mapping: Toward Robust and Generalizable Learning in Imaging
Figure 2 for Medical Image Harmonization Using Deep Learning Based Canonical Mapping: Toward Robust and Generalizable Learning in Imaging
Figure 3 for Medical Image Harmonization Using Deep Learning Based Canonical Mapping: Toward Robust and Generalizable Learning in Imaging
Figure 4 for Medical Image Harmonization Using Deep Learning Based Canonical Mapping: Toward Robust and Generalizable Learning in Imaging
Viaarxiv icon