Abstract:Developing inherently interpretable models for prediction has gained prominence in recent years. A subclass of these models, wherein the interpretable network relies on learning high-level concepts, are valued because of closeness of concept representations to human communication. However, the visualization and understanding of the learnt unsupervised dictionary of concepts encounters major limitations, specially for large-scale images. We propose here a novel method that relies on mapping the concept features to the latent space of a pretrained generative model. The use of a generative model enables high quality visualization, and naturally lays out an intuitive and interactive procedure for better interpretation of the learnt concepts. Furthermore, leveraging pretrained generative models has the additional advantage of making the training of the system more efficient. We quantitatively ascertain the efficacy of our method in terms of accuracy of the interpretable prediction network, fidelity of reconstruction, as well as faithfulness and consistency of learnt concepts. The experiments are conducted on multiple image recognition benchmarks for large-scale images. Project page available at https://jayneelparekh.github.io/VisCoIN_project_page/
Abstract:In this thesis, we develop theoretical, algorithmic and experimental contributions for Machine Learning with limited labels, and more specifically for the tasks of Image Classification and Object Detection in Computer Vision. In a first contribution, we are interested in bridging the gap between theory and practice for popular Meta-Learning algorithms used in Few-Shot Classification. We make connections to Multi-Task Representation Learning, which benefits from solid theoretical foundations, to verify the best conditions for a more efficient meta-learning. Then, to leverage unlabeled data when training object detectors based on the Transformer architecture, we propose both an unsupervised pretraining and a semi-supervised learning method in two other separate contributions. For pretraining, we improve Contrastive Learning for object detectors by introducing the localization information. Finally, our semi-supervised method is the first tailored to transformer-based detectors.
Abstract:Data augmentation is an essential building block for learning efficient deep learning models. Among all augmentation techniques proposed so far, linear interpolation of training data points, also called mixup, has found to be effective for a large panel of applications. While the majority of works have focused on selecting the right points to mix, or applying complex non-linear interpolation, we are interested in mixing similar points more frequently and strongly than less similar ones. To this end, we propose to dynamically change the underlying distribution of interpolation coefficients through warping functions, depending on the similarity between data points to combine. We define an efficient and flexible framework to do so without losing in diversity. We provide extensive experiments for classification and regression tasks, showing that our proposed method improves both performance and calibration of models. Code available in https://github.com/ENSTA-U2IS/torch-uncertainty
Abstract:For specialized and dense downstream tasks such as object detection, labeling data requires expertise and can be very expensive, making few-shot and semi-supervised models much more attractive alternatives. While in the few-shot setup we observe that transformer-based object detectors perform better than convolution-based two-stage models for a similar amount of parameters, they are not as effective when used with recent approaches in the semi-supervised setting. In this paper, we propose a semi-supervised method tailored for the current state-of-the-art object detector Deformable DETR in the few-annotation learning setup using a student-teacher architecture, which avoids relying on a sensitive post-processing of the pseudo-labels generated by the teacher model. We evaluate our method on the semi-supervised object detection benchmarks COCO and Pascal VOC, and it outperforms previous methods, especially when annotations are scarce. We believe that our contributions open new possibilities to adapt similar object detection methods in this setup as well.
Abstract:The use of pretrained deep neural networks represents an attractive way to achieve strong results with few data available. When specialized in dense problems such as object detection, learning local rather than global information in images has proven to be more efficient. However, for unsupervised pretraining, the popular contrastive learning requires a large batch size and, therefore, a lot of resources. To address this problem, we are interested in transformer-based object detectors that have recently gained traction in the community with good performance and with the particularity of generating many diverse object proposals. In this work, we present Proposal Selection Contrast (ProSeCo), a novel unsupervised overall pretraining approach that leverages this property. ProSeCo uses the large number of object proposals generated by the detector for contrastive learning, which allows the use of a smaller batch size, combined with object-level features to learn local information in the images. To improve the effectiveness of the contrastive loss, we introduce the object location information in the selection of positive examples to take into account multiple overlapping object proposals. When reusing pretrained backbone, we advocate for consistency in learning local information between the backbone and the detection head. We show that our method outperforms state of the art in unsupervised pretraining for object detection on standard and novel benchmarks in learning with fewer data.
Abstract:The remarkable success of deep neural networks (DNN) is often attributed to their high expressive power and their ability to approximate functions of arbitrary complexity. Indeed, DNNs are highly non-linear models, and activation functions introduced into them are largely responsible for this. While many works studied the expressive power of DNNs through the lens of their approximation capabilities, quantifying the non-linearity of DNNs or of individual activation functions remains an open problem. In this paper, we propose the first theoretically sound solution to track non-linearity propagation in deep neural networks with a specific focus on computer vision applications. Our proposed affinity score allows us to gain insights into the inner workings of a wide range of different architectures and learning paradigms. We provide extensive experimental results that highlight the practical utility of the proposed affinity score and its potential for long-reaching applications.
Abstract:This paper outlines the winning solutions employed in addressing the MUAD uncertainty quantification challenge held at ICCV 2023. The challenge was centered around semantic segmentation in urban environments, with a particular focus on natural adversarial scenarios. The report presents the results of 19 submitted entries, with numerous techniques drawing inspiration from cutting-edge uncertainty quantification methodologies presented at prominent conferences in the fields of computer vision and machine learning and journals over the past few years. Within this document, the challenge is introduced, shedding light on its purpose and objectives, which primarily revolved around enhancing the robustness of semantic segmentation in urban scenes under varying natural adversarial conditions. The report then delves into the top-performing solutions. Moreover, the document aims to provide a comprehensive overview of the diverse solutions deployed by all participants. By doing so, it seeks to offer readers a deeper insight into the array of strategies that can be leveraged to effectively handle the inherent uncertainties associated with autonomous driving and semantic segmentation, especially within urban environments.
Abstract:Deep learning classifiers are now known to have flaws in the representations of their class. Adversarial attacks can find a human-imperceptible perturbation for a given image that will mislead a trained model. The most effective methods to defend against such attacks trains on generated adversarial examples to learn their distribution. Previous work aimed to align original and adversarial image representations in the same way as domain adaptation to improve robustness. Yet, they partially align the representations using approaches that do not reflect the geometry of space and distribution. In addition, it is difficult to accurately compare robustness between defended models. Until now, they have been evaluated using a fixed perturbation size. However, defended models may react differently to variations of this perturbation size. In this paper, the analogy of domain adaptation is taken a step further by exploiting optimal transport theory. We propose to use a loss between distributions that faithfully reflect the ground distance. This leads to SAT (Sinkhorn Adversarial Training), a more robust defense against adversarial attacks. Then, we propose to quantify more precisely the robustness of a model to adversarial attacks over a wide range of perturbation sizes using a different metric, the Area Under the Accuracy Curve (AUAC). We perform extensive experiments on both CIFAR-10 and CIFAR-100 datasets and show that our defense is globally more robust than the state-of-the-art.
Abstract:Most of existing deep learning models rely on excessive amounts of labeled training data in order to achieve state-of-the-art results, even though these data can be hard or costly to get in practice. One attractive alternative is to learn with little supervision, commonly referred to as few-shot learning (FSL), and, in particular, meta-learning that learns to learn with few data from related tasks. Despite the practical success of meta-learning, many of its algorithmic solutions proposed in the literature are based on sound intuitions, but lack a solid theoretical analysis of the expected performance on the test task. In this paper, we review the recent advances in meta-learning theory and show how they can be used in practice both to better understand the behavior of popular meta-learning algorithms and to improve their generalization capacity. This latter is achieved by integrating the theoretical assumptions ensuring efficient meta-learning in the form of regularization terms into several popular meta-learning algorithms for which we provide a large study of their behavior on classic few-shot classification benchmarks. To the best of our knowledge, this is the first contribution that puts the most recent learning bounds of meta-learning theory into practice for the popular task of few-shot classification.