Abstract:As large language models (LLMs) are trained on massive datasets, they have raised significant privacy and ethical concerns due to their potential to inadvertently retain sensitive information. Unlearning seeks to selectively remove specific data from trained models, such as personal information or copyrighted content. Current approaches targeting specific output sequences at the token level often fail to achieve complete forgetting and remain susceptible to prompt rephrasing. We propose Align-then-Unlearn, a novel framework that performs unlearning in the semantic embedding space rather than directly on output tokens. Align-then-Unlearn first augments the LLM with an embedding prediction module trained to anticipate future context representations. Unlearning is then achieved by fine-tuning the model to minimize the similarity between these predicted embeddings and a target embedding that represents the concept to be removed. Initial results show that Align-then-Unlearn effectively removes targeted knowledge with minimal degradation in overall model utility. These findings suggest that embedding-based unlearning offers a promising and robust approach to removing conceptual knowledge. Our code is available at https://github.com/ExplainableML/align-then-unlearn.
Abstract:Time series classification is a fundamental task in healthcare and industry, yet the development of time series foundation models (TSFMs) remains limited by the scarcity of publicly available time series datasets. In this work, we propose Time Vision Transformer (TiViT), a framework that converts time series into images to leverage the representational power of frozen Vision Transformers (ViTs) pretrained on large-scale image datasets. First, we theoretically motivate our approach by analyzing the 2D patching of ViTs for time series, showing that it can increase the number of label-relevant tokens and reduce the sample complexity. Second, we empirically demonstrate that TiViT achieves state-of-the-art performance on standard time series classification benchmarks by utilizing the hidden representations of large OpenCLIP models. We explore the structure of TiViT representations and find that intermediate layers with high intrinsic dimension are the most effective for time series classification. Finally, we assess the alignment between TiViT and TSFM representation spaces and identify a strong complementarity, with further performance gains achieved by combining their features. Our findings reveal yet another direction for reusing vision representations in a non-visual domain.
Abstract:In recent years, dataset distillation has provided a reliable solution for data compression, where models trained on the resulting smaller synthetic datasets achieve performance comparable to those trained on the original datasets. To further improve the performance of synthetic datasets, various training pipelines and optimization objectives have been proposed, greatly advancing the field of dataset distillation. Recent decoupled dataset distillation methods introduce soft labels and stronger data augmentation during the post-evaluation phase and scale dataset distillation up to larger datasets (e.g., ImageNet-1K). However, this raises a question: Is accuracy still a reliable metric to fairly evaluate dataset distillation methods? Our empirical findings suggest that the performance improvements of these methods often stem from additional techniques rather than the inherent quality of the images themselves, with even randomly sampled images achieving superior results. Such misaligned evaluation settings severely hinder the development of DD. Therefore, we propose DD-Ranking, a unified evaluation framework, along with new general evaluation metrics to uncover the true performance improvements achieved by different methods. By refocusing on the actual information enhancement of distilled datasets, DD-Ranking provides a more comprehensive and fair evaluation standard for future research advancements.
Abstract:Humans can easily tell if an attribute (also called state) is realistic, i.e., feasible, for an object, e.g. fire can be hot, but it cannot be wet. In Open-World Compositional Zero-Shot Learning, when all possible state-object combinations are considered as unseen classes, zero-shot predictors tend to perform poorly. Our work focuses on using external auxiliary knowledge to determine the feasibility of state-object combinations. Our Feasibility with Language Model (FLM) is a simple and effective approach that leverages Large Language Models (LLMs) to better comprehend the semantic relationships between states and objects. FLM involves querying an LLM about the feasibility of a given pair and retrieving the output logit for the positive answer. To mitigate potential misguidance of the LLM given that many of the state-object compositions are rare or completely infeasible, we observe that the in-context learning ability of LLMs is essential. We present an extensive study identifying Vicuna and ChatGPT as best performing, and we demonstrate that our FLM consistently improves OW-CZSL performance across all three benchmarks.
Abstract:Neural networks are often black boxes, reflecting the significant challenge of understanding their internal workings. We propose a different perspective that challenges the prevailing view: rather than being inscrutable, neural networks exhibit patterns in their raw population activity that mirror regularities in the training data. We refer to this as the Reflection Hypothesis and provide evidence for this phenomenon in both simple recurrent neural networks (RNNs) and complex large language models (LLMs). Building on this insight, we propose to leverage cognitively-inspired methods of chunking to segment high-dimensional neural population dynamics into interpretable units that reflect underlying concepts. We propose three methods to extract these emerging entities, complementing each other based on label availability and dimensionality. Discrete sequence chunking (DSC) creates a dictionary of entities; population averaging (PA) extracts recurring entities that correspond to known labels; and unsupervised chunk discovery (UCD) can be used when labels are absent. We demonstrate the effectiveness of these methods in extracting entities across varying model sizes, ranging from inducing compositionality in RNNs to uncovering recurring neural population states in large models with diverse architectures, and illustrate their advantage over other methods. Throughout, we observe a robust correspondence between the extracted entities and concrete or abstract concepts. Artificially inducing the extracted entities in neural populations effectively alters the network's generation of associated concepts. Our work points to a new direction for interpretability, one that harnesses both cognitive principles and the structure of naturalistic data to reveal the hidden computations of complex learning systems, gradually transforming them from black boxes into systems we can begin to understand.
Abstract:Despite recent advances in text-to-image generation, using synthetically generated data seldom brings a significant boost in performance for supervised learning. Oftentimes, synthetic datasets do not faithfully recreate the data distribution of real data, i.e., they lack the fidelity or diversity needed for effective downstream model training. While previous work has employed few-shot guidance to address this issue, existing methods still fail to capture and generate features unique to specific real images. In this paper, we introduce a novel dataset generation framework named LoFT, LoRA-Fused Training-data Generation with Few-shot Guidance. Our method fine-tunes LoRA weights on individual real images and fuses them at inference time, producing synthetic images that combine the features of real images for improved diversity and fidelity of generated data. We evaluate the synthetic data produced by LoFT on 10 datasets, using 8 to 64 real images per class as guidance and scaling up to 1000 images per class. Our experiments show that training on LoFT-generated data consistently outperforms other synthetic dataset methods, significantly increasing accuracy as the dataset size increases. Additionally, our analysis demonstrates that LoFT generates datasets with high fidelity and sufficient diversity, which contribute to the performance improvement. The code is available at https://github.com/ExplainableML/LoFT.
Abstract:Sparse Autoencoders (SAEs) have recently been shown to enhance interpretability and steerability in Large Language Models (LLMs). In this work, we extend the application of SAEs to Vision-Language Models (VLMs), such as CLIP, and introduce a comprehensive framework for evaluating monosemanticity in vision representations. Our experimental results reveal that SAEs trained on VLMs significantly enhance the monosemanticity of individual neurons while also exhibiting hierarchical representations that align well with expert-defined structures (e.g., iNaturalist taxonomy). Most notably, we demonstrate that applying SAEs to intervene on a CLIP vision encoder, directly steer output from multimodal LLMs (e.g., LLaVA) without any modifications to the underlying model. These findings emphasize the practicality and efficacy of SAEs as an unsupervised approach for enhancing both the interpretability and control of VLMs.
Abstract:With the increasing use of image generation technology, understanding its social biases, including gender bias, is essential. This paper presents the first large-scale study on gender bias in text-to-image (T2I) models, focusing on everyday situations. While previous research has examined biases in occupations, we extend this analysis to gender associations in daily activities, objects, and contexts. We create a dataset of 3,217 gender-neutral prompts and generate 200 images per prompt from five leading T2I models. We automatically detect the perceived gender of people in the generated images and filter out images with no person or multiple people of different genders, leaving 2,293,295 images. To enable a broad analysis of gender bias in T2I models, we group prompts into semantically similar concepts and calculate the proportion of male- and female-gendered images for each prompt. Our analysis shows that T2I models reinforce traditional gender roles, reflect common gender stereotypes in household roles, and underrepresent women in financial related activities. Women are predominantly portrayed in care- and human-centered scenarios, and men in technical or physical labor scenarios.
Abstract:Keeping large language models factually up-to-date is crucial for deployment, yet costly retraining remains a challenge. Knowledge editing offers a promising alternative, but methods are only tested on small-scale or synthetic edit benchmarks. In this work, we aim to bridge research into lifelong knowledge editing to real-world edits at practically relevant scale. We first introduce WikiBigEdit; a large-scale benchmark of real-world Wikidata edits, built to automatically extend lifelong for future-proof benchmarking. In its first instance, it includes over 500K question-answer pairs for knowledge editing alongside a comprehensive evaluation pipeline. Finally, we use WikiBigEdit to study existing knowledge editing techniques' ability to incorporate large volumes of real-world facts and contrast their capabilities to generic modification techniques such as retrieval augmentation and continual finetuning to acquire a complete picture of the practical extent of current lifelong knowledge editing.
Abstract:Understanding neural networks is challenging due to their high-dimensional, interacting components. Inspired by human cognition, which processes complex sensory data by chunking it into recurring entities, we propose leveraging this principle to interpret artificial neural population activities. Biological and artificial intelligence share the challenge of learning from structured, naturalistic data, and we hypothesize that the cognitive mechanism of chunking can provide insights into artificial systems. We first demonstrate this concept in recurrent neural networks (RNNs) trained on artificial sequences with imposed regularities, observing that their hidden states reflect these patterns, which can be extracted as a dictionary of chunks that influence network responses. Extending this to large language models (LLMs) like LLaMA, we identify similar recurring embedding states corresponding to concepts in the input, with perturbations to these states activating or inhibiting the associated concepts. By exploring methods to extract dictionaries of identifiable chunks across neural embeddings of varying complexity, our findings introduce a new framework for interpreting neural networks, framing their population activity as structured reflections of the data they process.